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1 Introduction

This paper is intended to give an overview of the theory of abstract cell complexes
from the viewpoint of digital image processing. We focus on digital topology and
digital geometry and try to analyse the theory in a wide variety.

In the next four sections we present the base notions and some important theo-
rems predominantly based on the publications of V.A.Kovalevsky, but also of other
authors.

Section 6 contains the structured representation of the notions and theorems, which
should be understood as a map of the theory.

Beside this paper, the definitions and theorems can be watched as an HTML-presen-
tation at the following address:

http://www.inf.tu-dresden.de/∼hs24/ACC
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2 Notions and Theorems in Classical and Digital

Topology

2.1 Classical Topology

In the first section we present some elementary definitions from classical topology
[14] which are necessary in the field of abstract cell complexes.

Definition 1: A topological space R is a pair (E, SY ) consisting of a set E of
abstract elements and a system SY = {S1, S2, ..., Si, ...} of subsets Si of E. These
subsets are called the open subsets of the space and must satisfy the following
axioms:

(A1) The empty subset ∅ and the set E belong to SY .

(A2) For every family F of subsets Si belonging to SY the union of all subsets
which are elements of F must also belong to SY .

(A3) If some subsets S1 and S2 belong to SY then the intersection S1 ∩ S2 must
also belong to SY .

A topological space is called finite iff the set E contains a finite number of elements.
A topological space is called locally finite if every element of E bounds a finite num-
ber of other elements.

A topological space fulfills the Ti-separation property and is then called Ti-space iff
it fulfills the axiom (Ti) (i = 0, 1, 2). In the field of cellular complexes we are only
interested in the T0-separation property. In the following the separation axioms
(see [14], p.118) are listed for completeness:

(T0) For any two points there is an open set containing the one but not the other
point. (Kolmogoroff, 1935)

(T1) For any two points x, y there exist two open sets G, H such that x ∈ G and
y /∈ H and x /∈ G and y ∈ H . (Fréchet, 1928)

(T2) For any two points x, y there exist two open sets G, H such that x ∈ G, y ∈ H
and G ∩ H = ∅. (Hausdorff, 1914)

There (T0) is the weakest separation axiom. (T1) is a stronger demand and each
T1-space is also a T0-space. The strongest of the three demands is (T2) and each
T2-space is also a T1-space. T2-spaces are usually called Hausdorff-spaces.

Definition 2: A one-to-one correspondence f between a topological space R and
a topological space R′ is a homeomorphism iff the following condition is satisfied:

f : R ←→ R′ continuous =⇒ f−1 : R′ ←→ R continuous

Another term for homeomorphism is topological correspondence. Two topological
spaces are said to be topologically equivalent iff there exists a homeomorphic corre-
spondence between them.

Two subsets of a topological space can be considered as identical from a topological
point of view iff there exists a homeomorphism between them.

Definition 3: A property of a subset M of a topological space R is a topological
invariant iff the same property is also valid for the set f(M), for any homeomor-
phism f .
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The dimension of a topological space is an example for a non-trivial topological
invariant.

Definition 4: A topological neighborhood of a point p in a topological space R is
any set containing an open subset of R which contains p.

2.2 Digital Topology

In the next section the most important notions from digital topology are presented.
When not explicitly marked, they can be found in [5].

Definition 5: An abstract cell complex (ACC) C = (E, B, dim) is a set E of
abstract elements provided with an antisymmetric, irreflexive, and transitive bi-
nary relation B ⊂ E × E called the bounding relation, and with a dimension
function dim : E −→ I from E into the set I of non-negative integers such that
dim(e′) < dim(e′′) for all pairs (e′, e′′) ∈ B.

The bounding relation B is a partial order in E. The bounding relation is denoted
by e′ < e′′ which means that the cell e′ bounds the cell e′′. Furthermore the
property that any cell can only bound cells of higher dimension is emphasized by
this notation:

e′ < e′′ =⇒ dim(e′) < dim(e′′)

If a cell e′ bounds another cell e′′ then e′ is called a side of e′′. The sides of an
abstract cell e′′ are not parts of e′′. The intersection of two distinct abstract cells,
different from that of Euclidean cells, is always empty.

If the dimension dim(e′) of a cell e′ is equal to d then e′ is called d-dimensional cell
or a d-cell. An ACC is called k-dimensional or a k-complex if the dimensions of all
its cells are less or equal to k. Cells of dimension k, which means cells bounding no
other cells, are called base cells.

In the field of digital image processing we normally use regular imagecarrier. There
the 0-cells are called points, 1-cells are called cracks, 2-cell are called pixels and
3-cells are called voxels.

The central facts of definition 5 can be summarized in three axioms called the cell
complex axioms [14]:

(C1) From (e′, e′′) ∈ B and (e′′, e′′′) ∈ B follows (e′, e′′′) ∈ B (transitivity)

(C2) From (e′, e′′) ∈ B follows dim(e′) < dim(e′′) (monotony)

(C3) For each element e′ there exist only a finite number of elements e′′ with
(e′′, e′) ∈ B

In addition to (C3) and leaning to the definition of topological spaces an abstract
cell complex is called locally finite iff each of its cells bounds only a finite number
of other cells.

The following theorem was first introduced and proofed in [5]:

Theorem 1: Every finite separable topological space is an abstract cellular com-
plex according to Definition 5.
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This theorem shows that there is no finite topological structure which is different
from the abstract cellular complexes. Furthermore the reversal of the theorem is
valid which means that every abstract cell complex is a topological space.

Here we want to introduce a corrected version of this theorem:

Theorem 1a: Every finite T0-separable topological space is isomorphic to an ab-
stract cellular complex.

Definition 6: A subcomplex S = (E′, B′, dim′) of a given ACC C = (E, B, dim)
is an ACC whose set E′ is a subset of E and the relation B′ is an intersection of B
with E′ × E′. The dimension dim′ is equal to dim for all cells of E′.

Definition 7: A subset OS of cells of a subcomplex S of an ACC C is called open
in S if OS contains each cell of S which is bounded by a cell of OS.

Definition 8: The smallest subset of a set S which contains a given cell c ∈ S and
is open in S is called smallest neighborhood of c relative to S and is denoted by
SON(c, S).

Furthermore be SON∗(c, S) = SON(c, S) − {c}. [13]

In earlier papers the notion smallest open neighborhood was used, but it was incor-
rect, because the smallest neighborhood is open by definition. The notation SON
will be used anyway.

Definition 9: A subset CS of cells of an ACC C is called closed if CS contains all
cells of C bounding cells of CS.

There exists a duality between the notions open and closed such that a subcomplex
S is open in C iff its complement C − CS is closed.

Definition 10: The smallest subset of a set S which contains a given cell c ∈ S
and is closed in S is called the closure of c relative to S and denoted by Cl(c, S).

Furthermore be Cl∗(c, S) = Cl(c, S) − {c}. [13]

Definition 11: The closed frontier Fr(S, C) of a subcomplex S of C relative to
C is the subcomplex of C containing all cells c ∈ C whose smallest neighborhood
SON(c, C) contains both cells of S as well as cells of the complement C − S.

Definition 12: The frontier F of an n-dimensional subcomplex SC of an n-
dimensional ACC C is called simple if for each cell c ∈ F the intersection of SON∗(c)
with both SC and its complement C − SC is non-empty and connected. [11]

A notion which is dual to the definition of the closed frontier is the following:

Definition 13: The open frontier Of(S, C) of a subcomplex S of a complex C rel-
ative to C is the subcomplex of C containing all cells c ∈ C whose closure Cl(c, C)
contains both cells of S as well as cells of the complement C − S. [8]

Definition 14: The boundary ∂S of an n-dimensional subcomplex S of an n-
dimensional ACC C is the union of the closures of all (n-1)-cells of C each of which
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bounds exactly one n-cell of S. [7]

The notions closed frontier and boundary seem to be identical at first sight. In
the case of a k-cell in an n-dimensional space with k = n they are identical. Both
frontiers are a (k-1)-dimensional sphere.
Considering a k-cell with k < n one can recognize that the closed frontier is different
from the boundary of the cell. The boundary is here a (k-1)-dimensional sphere as
it was in the first case. The closed frontier contains in addition to the boundary
also the k-cell itself, because it contains the i-cells with k < i ≤ n in its smallest
neighborhood.

The boundary of a subcomplex of an ACC has the expected property from the
continuum, i.e. the boundary of a 2-dimensional complex is 1-dimensional and has
no area. The boundary of a 3-dimensional complex ist 2-dimensional and has no
volume. This property was not reached with the definition of boundary pixels in
2-dimensional digital images. Furthermore one has no more to distinguish between
inner and outer boundary.

The boundary definition in digital images is an instrument to solve the problem
which arises with transferring the Jordan Theorem into digital spaces.

Definition 15: Two cells e′ and e′′ of an ACC C are called incident with each
other in C iff one of the following cases is valid: [7]

• (e′, e′′) ∈ B

• (e′′, e′) ∈ B

• e′ = e′′

According to that the incidence relation is symmetric, reflexive and not transitive.

Definition 16: Two cells e′ and e′′ of an ACC C are called connected to each other
in C iff either e′ is incident with e′′ or there exists a cell c ∈ C which is connected
to both e′ and e′′. Because of this recursive definition the connectedness relation is
the transitive hull of the incidence relation. [7]

It may be easily shown that the connectedness relation is an equivalence relation.
Thus it defines a partition of an ACC C into equivalence classes called the compo-
nents of C.

An ACC C consisting of a single component is also connected.

Definition 17: A sequence of pairwise incident cells in an ACC C of the form

xn
0xn−1

1 xn
2 ...xn−1

l−1 xn
l

where xn
i is an n-dimensional cell and xn−1

i is an (n-1)-dimensional cell of C is
called an n-dimensional path in C.

Definition 18: An n-dimensional ACC C is called strongly connected if any two
n-dimensional cells of C may be connected by an n-dimensional path in C.

Definition 19: Two ACC’s A and A′ are called B-isomorphic to each other if there
exists a one-to-one correspondence BI : A −→ A′ between their cells which retains
the bounding relation, but not necessarily the dimension, if thus applies:
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∀a1, a2 ∈ A : a1 < a2 =⇒ BI(a1) < BI(a2)

Definition 20: An n-dimensional ACC C is called homogeneously n-dimensional
if every k-dimensional cell of C with k < n is incident with an n-cell of C.

Definition 21: A homogeneously n-dimensional ACC C is called nonbranching if
every (n-1)-cell of C bounds at most two n-cells of C. [14]

Definition 22: A region is an open connected subset of the space.

Definition 23: A region R of an n-dimensional ACC C is called solid if every cell
c ∈ C which is not in R is incident with an n-cell of the complement C − R. [5]

Another definition for this notion is the following:

Definition 23a: A homogeneously n-dimensional subcomplex SC of an n-dimen-
sional ACC C is called solid if its complement C − SC is also homogeneously n-
dimensional. [11]

Investigating the properties of homogeneously n-dimensional complexes one can see
that according to Definition 23a every solid region R of an ACC C is homogeneously
n-dimensional. As a generalization of this proposition the next theorem follows:

Theorem 2: Every n-dimensional region S of an n-dimensional ACC C is homo-
geneously n-dimensional.

Proof:

According to Definition 22 a region is an open and connected subset of
the space.
Since S is open, S contains no k-cells with k < n which are not incident
with an n-cell of S, otherwise S would not be open in C.
Thus every k-cell of S is incident with an n-cell of S which is according
to Definition 20 the property of being homogeneously n-dimensional.

�

Contrary to the complement of a solid region the complement of an open connected
complex is in general not homogeneously n-dimensional, because it is not necessar-
ily connected.

Since a homogeneously n-dimensional subcomplex is not necessarily connected, i.e.
it consists of more than one component, the theorem can be generalized:

Theorem 3: Every open subcomplex T of an n-dimensional ACC C is homoge-
neously n-dimensional.

Proof:

Since T is open, all k-cells of T with k < n are incident with an n-cell of
T . This is, analogous to the proof of the previous theorem, the property
of being homogeneously n-dimensional.

�
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2.3 Block Complexes

If the cell complexes are applied to digital image processing it is useful to consider
several cells as regions. Digital images commonly consist of homogenous regions
with the same label. This label is assigned to each pixel as a gray value. Based on
those homogeneous regions the following notions are defined.

Definition 24: Let M denote a subdivision of an AC complex A into subsets Sk
i .

The subsets with k = 0 are the 0-cells of A. Each subset with k > 0 is combi-
natorial homeomorphic to an open k-dimensional ball. A bounding relation BR
and a dimension function Dim are defined on M in the native way. The triple
B(A) = (M, BR, Dim) is called block complex of A; the subsets Sk

i are called k-
dimensional blocks or k-blocks. [10]

Hence block cells are in contrast to the cell splitting disjoint [14], every block cell
of highest dimension can be declared as an open subset of B(A). So a T0-topology
can be defined on B(A). In other words, B(A) is a T0-space.

Definition 25: The incidence structure IS of a block BC of a proper block complex
K is a subcomplex of K containing all blocks incident to BC except BC itself [13]:

IS(BC, K) = SON∗(BC, K) ∪ Cl∗(BC, K)

Definition 26: A block complex may be described by a data structure called the
cell list. In the 2-dimensional case it consists of one metric and three topological
sublists. The topological sublists are that of 0-, 1- and 2-dimensional block cells.
The metric sublist describes the coordinates of the 0-cells and of some intermediate
points in the 1-cells. [5]

In the papers [10, 13] the cell list is generalized to more than two dimensions.

2.4 Skeletons

In digital image processing skeletons of segments of an image are often needed. Us-
ing the cell complexes it is also possible to extract skeletons from segments in an
image.

Definition 27: The skeleton of a subset T of a two-dimensional image I is the
smallest subset S ⊂ T satisfying the following conditions [12]:

1) The number of components of S equals that of T .

2) The number of components of I − S equals that of I − T .

3) Some singularities of T are kept in S.

Singularities may be defined e.g. as the ”end points” in a 2D image or ”borders of
layers” in a 3D image etc.

Hence according to Definition 27 the skeleton has not necessarily lower dimension
than the subcomplex itself, another demand to the skeleton is added:

4) dim(S) = dim(T ) − 1

This is to ensure that in a two-dimensional image the dimension of the skeletons
equals 1 such that skeletons can be treated as 1-complexes.
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While investigating the topological properties of two-dimensional complexes one can
see that there are differences between the complexes and their skeletons. We are
going to show this by the example of the images of characters.
Consider the 26 characters of the alphabet as two-dimensional images and inves-
tigate them for homeomorphisms between pairwise disjoint characters. Consider
the number of components of the complement of the image of the characters as the
topological invariant. The alphabet is now partitioned into three classes of char-
acters each of which with a complement-component-number of 1, 2 or 3. This is
shown in the next table.

complement-components character
1 C, E, F, G, H, I, J, K, L, M,

N, S, T, U, V, W, X, Y, Z
2 A, D, O, P, Q, R
3 B

Taking the skeletons into consideration, three different classes arise at first sight.
Here the classification feature is the number of components of the two-dimensional
carrier plane which are seperated by the skeleton. The difference to the two-
dimensional images of the characters is that now the elements of the classes are
no longer pairwise homeomorphic to each other. Hence now there are 9 classes.
In addition to the previous classification feature the elements of the skeleton-classes
have the same number of line-components and the same number of branching points
which are also topological invariants according to Definition 3.

components
of the carrier plane class character

1 C, I, J, L, M, N, S, U, V, W, Z

1
��
��
��
��

�
�
�
�

�
�
�
�

E, F, G, T, Y

1
��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

K, X

1
��
��
��

��
��
��

��
��
��
���
�
�
�

�
�
�
�

������������ H

2 D, O

2
���
���
���

���
���
���

P

2
��
��
��

��
��
��

Q

2
���
���
���

���
���
���

��
��
��

��
��
��

A, R

3
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�

B

The question now is, why reducing the dimension of a complex not only changes its
spatial form but also its topological properties? One must think about the ability
of the (n − 1)-dimensional skeleton for representing topological properties of an n-
complex.
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Since in the example the classification of the characters is not falsified but refined, it
seems to be possible to develop a character recognition on this base with eventually
adding some other topological or geometrical properties.

2.5 More Notions and Problems

In [1] the following terms for elementary topological notions are used:

Definition28: Let C be an ACC and A ⊂ C a subcomplex of C. Let then be

• interior of A: int A =
⋃

O⊂A, O open

O

• exterior of A: ext A = int (C \ A)

• boundary of A: ∂A = C \ (int A ∪ ext A)

• closure of A: A = int A ∪ ∂A

With this definition there arises a contradiction to the definition of the boundary
(Definition 14) which is shown with an example.

Consider first the two-dimensional pixel-array, consisting 0-, 1- and 2-cells, as the
ACC C. Furthermore let A ⊂ C be the following connected subcomplex of C.
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example for a connected subcomplex A ⊂ C

The interior of this subcomplex is according to Definition 28 the set of all 2-cells,
because only the 2-cells are the open subsets of A:

int A = {a | a ∈ A ∧ dim(a) = 2}
The exterior of the subcomplex A, which is the interior of its complement relative
to C, is

ext A = int (C \ A)

and has the following appearance:
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exterior of A

The boundary according to Definition 28 is

∂A = C \ (int A ∪ ext A)
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and is now confronted to Kovalevsky’s boundary for this example.
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Ihle boundary (left) and Ko-
valevsky boundary (right)

Considering the closed frontier additionally, one can recognize that it is possible
that in [1] with the notion boundary the closed frontier according to Definition
11 was meant. So it is important to use these three notions correctly, because the
example shows that there are complexes where the notions have not the same results.
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3 Manifolds, Balls and Spheres

3.1 Manifolds

Manifolds are elementary mathematical objects. This is the reason why some rele-
vant notions are presented here.

An early definition for this notion, which should not be used anymore, is the fol-
lowing:

Definition 29: An n-dimensional finite manifold Mn (n-manifold) is an n-dimen-
sional ACC satisfying the following conditions:

1) A 0-dimensional manifold M0 consists of two 0-cells without any bounding
relation.

2) An n-dimensional manifold Mn with n > 0 is connected.

3) For all cells c ∈ Mn the subcomplex of all cells different from c which are
incident with c is B-isomorphic to an (n-1)-dimensional manifold.

A more suitable definition which is not based on the B-isomorphism introduced by
Kovalevsky is the following:

Definition 29a: An n-dimensional combinatorial manifold Mn without bound-
ary is an n-dimensional ACC in which the boundary of the smallest neighborhood
SON(P, Mn) of each 0-cell P is homeomorhpic to an (n-1)-dimensional sphere. In
a manifold with boundary the SON(P, Mn) of some 0-cells P may have a boundary
homeomorphic to a ”half-sphere”, i.e. to an (n-1)-ball. [12]

Hence a manifold is a locally strongly connected ACC.

Definition 30: A one-dimensional quasi-manifold is a connected one-dimensional
ACC in which every 1-cell is bounded by exactly two 0-cells and every 0-cell bounds
an even number (at least two) of the 1-cells. [8]

Definition 31: A two-dimensional quasi-manifold is a connected two-dimensional
ACC in which every 2-cell is bounded by 0- and 1-cells composing a one-dimensional
manifold, i.e. a cycle. Every 1-cell is bounded by exactly two 0-cells and bounds
an even number (at least two) 2-cells. The 1- and 2-cells bounded by a 0-cell com-
pose one or more subcomplexes each of which is B-isomorphic to a one-dimensional
quasi-manifold. [8]

Definition 32: A strongly connected, nonbranching, homogeneously n-dimensional
complex is called pseudomanifold. [14]

According to the definition of the pseudomanifold Rinow formulated the netxt two
theorems: [14]

Theorem 4: Every homogeneously n-dimensional complex C can be represented
as the union of its strong components C =

⋃
i∈I

Ci. Each strong component is a

maximal, strongly connected, homogeneously n-dimensional, closed subcomplex of
C and is embedded in a component of C. For two strong components Ci and Cj

(i = j) the following expression holds: dim(Ci ∩ Cj) < n − 1.
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Theorem 5: Every strong component of a nonbranching complex is a pseudo-
manifold.

Definition 33: The topological genus of the surface of a manifold is defined as the
number of necessary cuts to transform the surface into a simply-connected set [2].

I.e. a manifold of genus 0 corresponds to a sphere, a manifold of genus 1 to a torus
and a manifold of genus g corresponds to a sphere with g handles.

3.2 Combinatorial Topology

The field of combinatorial topology is well suited to represent objects with their
topological properties with the help of computers. The theory is especially applied
to digital image processing, for example to encode three-dimensional images effi-
ciently.
The notions presented in this section are taken from [12]. More details can be found
in [15].

Definition 34: A 1-cell is called proper if it is bounded by exactly two 0-cells.

Definition 35: An elementary subdivision of a proper 1-cell c1, which is bounded
by the 0-cells c0

1 and c0
2, replaces the complex C′ = (c0

1 < c1 > c0
2) by the 1-complex

C′′ = (c0
1 < c1

1 > c0
3 < c1

2 > c0
2) with two 1-cells c1

1 and c1
2 and a new 0-cell c0

3. One
or both of the 0-cells c0

1 and c0
2 can be missing.

Definition 36: An m-complex arising through N(N ≥ 0) elementary subdivisions
of a single proper m-cell is called open combinatorial m-ball. When m = 1 it is a
sequence of pairwise incident 1- and 0-cells, starting and ending with a 1-cell. A
single 1-cell is also an open combinatorial 1-ball.

Definition 37: The boundary of an open m-ball is called combinatorial (m-1)-
sphere. When m = 1 it consists of exactly two 0-cells. The closure of an m-ball is
called closed m-ball. The union of two closed m-balls with identical boundaries is
called combinatorial m-sphere.

An m-cell cm with m > 1 is called proper if its boundary ∂cm is a combinatorial
(m-1)-sphere.

An ACC is called proper if all its cells are proper.

An elementary subdivision in an n-complex replaces a proper m-cell cm with
1 < m ≤ n with two proper m-cells cm

1 , cm
2 and a new proper (m-1)-cell c(m−1)

bounding both cm
1 and cm

2 . The boundary ∂c(m−1) is an (m-2)-sphere S(m−2) ⊂ ∂cm

with ∂(cm
1 ∪ c(m−1) ∪ cm

2 ) = ∂cm and c(m−1) /∈ ∂cm. [12]

The expression S(m−2) ⊂ ∂cm means that S(m−2) is a subset of the boundary which
bounds the cells cm

1 and cm
2 , which is expressed by ∂(cm

1 ∪ c(m−1) ∪ cm
2 ) = ∂cm. But

this expression was incorrect since the boundary ∂c(m−1) can only belong to the
boundary of the subdivided m-cell when the boundary of the m-cell is subdivided
itself.

Hence the following formulation is more suitable to describe this fact:
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S(m−2) ⊂ ∂(cm
1 ∪ cm

2 )

An elementary subdivision of an m-cell can be considered as a hierarchical process
where the cells of dimension 1 are subdivided first, after that the cells of dimension
2 etc., up to dimension m such that the boundary of the newly added cell was added
before.

Definition 38: Two proper AC complexes are called combinatorial homeomorphic
if they possess isomorphic subdivisions.

Definition 39: In an n-dimensional space an n-cell Zn is called a simple cell rel-
ative to an n-dimensional subcomplex Kn iff the intersection D of the boundaries
of Zn and Kn is homeomorphic to an (n-1)-ball.

Now one can consider the notions closed frontier (Definition 11), strongly connected
(Definition 18), homogeneously n-dimensional (Definition 20) and simple cell (Def-
inition 39).
Let B be the frontier of a four-dimensional subcomplex V of a four-dimensional
ACC C where B is nonbranching. Let T be a three-dimensional subcomplex of
B open in B, Fr(T ) its frontier relativ to B and Z ∈ B a 3-cell. The frontier
Cl∗(Z, B) of Z relative to B is denoted by K.

Theorem 6: The cell Z is simple relative to T iff the intersection D = K ∩ Fr(T )
and the complement K−D are two-dimensional strongly connected complexes where
D is contained in the frontier-complex of T . [10]

Theorem 7: The set SON∗(ck, Mn) of any k-cell ck of an n-manifold Mn with
0 ≤ k ≤ n − 1 is B-isomorphic to an (n − k − 1)-dimensional sphere if ck does
not belong to the boundary ∂Mn. The set Cl∗(ck, Mn) is then B-isomorphic to a
(k − 1)-dimensional sphere. [13]

Theorem 8: The boundary B of a simple and strongly connected solid subset V
of the Cartesian 3D space (ACC) is a two-dimensional quasi-manifold. [8]

These three theorems have significant importance in concerning algorithms for in-
vestigate manifolds and surfaces.
In [8] an algorithm is presented (the face code algorithm) which analyses two-
dimensional quasi-manifolds, i.e. surfaces of voxelsets. The result of the algorithm
is a linear data structure.
Another application is a method to describe 3-manifolds by cell lists. See [10, 13].
Other algorithms to investigate topological properties of subsets in two- and three-
dimensional digital images can be found in [12].

3.3 Interlaced Spheres

The field of interlaced spheres is theoretically and experimentally investigated in
[11]. Only an important definition and a theorem will be presented here.

Definition 40: The sphere Sk is said to span the ball B(k+1) if Sk = ∂B(k+1). Two
spheres Sm and Sk are called interlaced with each other if they do not intersect
each other but each of them intersects every ball spanning the other sphere.

Theorem 9: Two spheres Sm and Sk embedded in an n-dimensional ball Bn may
be interlaced with each other if and only if m + k + 1 = n.
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4 Cartesian Complexes and Digital Geometry

4.1 Locally Finite Cartesian Spaces

Definition 41: A connected one-dimensional complex in which all cells, except
two, are incident with exactly two other cells is called topological line. [12]

By assigning subsequent integer numbers to the cells of a topological line such a
way that a cell with the number x is incident with cells having the numbers x − 1
and x + 1, one can define coordinates of a one-dimensional space. ACC’s of greater
dimensions are defined as Cartesian products of such one-dimensional ACC’s.

Definition 42: A product ACC is called Cartesian complex. The one-dimensional
ACC’s are the coordinate axes Ai of the n-dimensional space. A cell of the n-
dimensional Cartesian ACC Cn is an n-tupel (a1, a2, ..., an) of cells of the corre-
sponding axes: ai ∈ Ai. [7]

The bounding relation on an n-dimensional Cartesian ACC Cn is defined as fol-
lows: An n-tupel (a1, a2, ..., an) is bounding another n-tupel (b1, b2, ..., bn) iff for all
i = 1, 2, ..., n the cell ai is incident with bi in Ai and dim(ai) ≤ dim(bi) in Ai. The
dimension of the product cell is the sum of dimensions of the factor cells in their
one-dimensional spaces.

The coordinates have been introduced without having introduced either a metric,
or the notion of a straight line, or the scalar product. Therefore it is correct to
speak of topological coordinates.

For applications in digital image processing they have the disadvantage that the size
of a pixel, which is the difference of the coordinate of the sides of the corresponding
square, is equal to 2 rather than to 1 as it is usual in image processing. To overcome
this drawback it is proposed in [7] to assign rational numbers with denominator 2
to subsequent cells of an axis. The 0-cells are assigned by fractions with an even
numerator and an odd numerator is assigned to each 1-cell such that the coordinates
of each 0-cell is an integer and that of 1-cells are ”half-integers”.
Hence the dimension of a product cell of an n-dimensional ACC is the number of
its half-integer coordinates.

4.2 Digital Geometry

The aim in digital geometry is to determine geometric properties of an continuous
object by its digital image. The main problem is the reduction of information by
the digitization, so one has to approximate.

In contrast to the continuous geometry differential geometric investigations cannot
be done locally. Therefore it is necessary to investigate the neighborhoods of the
local points, too. For example the curvature of surfaces [1] has to be determined in
this way.

To apply geometric notions in the field of abstract cell complexes it is necessary to
define a metric on the topological space. The distance, which is needed to define a
metric, can be based on the definition of topological coordinates introduced in the
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previous section. I.e. the distance between 0-cells in an n-dimensional space can be
calculated by the following formula:

d =
(
(x1b

− x1a)2 + (x2b
− x2a)2 + ... + (xnb

− xna)2
) 1

2

Based on the metric space the following basic notions can be defined [7]:

Definition 43: A digital half-plane is a solid region of a two-dimensional ACC
containing all pixels whose coordinates satisfy a linear inequality.

Definition 44: A non-empty intersection of digital half-planes is called digital con-
vex subset of the two-dimensional space.

Definition 45: A digital straight line segment (DSS) is any connected subset of
the boundary of a (digital) half-plane.

Definition 46: The minimum length polygon (MLP) is the shortest polygonal
curve lying completely in the closure of the open frontier of a region. [9]

Definition 47: The perimeter of a region R in a two-dimensional finite space is
the sum of the lengths of subsequent digital straight line segments obtained by sub-
dividing the boundary of R into as few as possible DSS’s.

As with the DSS-method the perimeter of a region can also be approximated with
the MLP-method. In [9] algorithms for the MLP-method are described, experimen-
tally investigated and compared to the DSS-method. One of the results is that both
methods can also treat non-convex regions efficiently. The DSS-method provides
the advantage of a faster convergence.

Definition 48: The Minkowski-distance is defined as follows [6]:
Let d(p, q) be the Euklidean distance between the two points p and q. Let M be a
set of points. Then let us call the value

DPS(p, M) = min
q∈M

d(p, q)

the distance from the point p to the set M . The value

DS(M1, M2) = max
p∈M1

DPS(p, M2)

is called the distance from the set M1 to the set M2. This value is obviously not
symmetric. The value

MD(M1, M2) = max (DS(M1, M2), DS(M2, M1))

is called the Minkowski-distance between the sets M1 and M2. It is symmetric with
respect to M1 and M2. Another term for this notion is Hausdorff-distance.

Kovalevsky and Fuchs introduced the following two theorems in [6]:

Theorem 10: Consider a convex subset S of the Euclidian plane and a polygon
P whose Minkowski-distance to the boundary of S is less than a tolerance t. Then
the perimeter of P differs from that of S by no more than 2πt.

Let S be a convex Euklidean polygon whose smallest interior angle is 2β. Let
DI(S) be the digital image of S obtained under a digitization with a pixel size of
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p. B is the crack boundary of DI(S), and P a polygon approximating B in such
a way that the Minkowski-distance between B and P does not exceed the value ε ·p.

Theorem 11: There exists such a pixel size p that the perimeters of S and P differ
by no more than 2π(

√
2

sinβ + ε) · p.

These two theorems have an important meaning in digital image processing, be-
cause they provide a method to approximate perimeters of regions in digital images
efficiently.

Definition 49: A digital disc is a two-dimensional solid region containing all pixels
of the plane whose coordinates satisfy the following inequality:

(x − xc)2 + (y − yc)2 < r2

The values x and y are the half-integer coordinates of the pixels, xc and yc are the
coordinates of the center and r is the radius of the disc. The values of xc, yc and r
may be integer of fractional.

Definition 50: A digital circular arc (DCA) is any connected subset of the bound-
ary of a digital disc.

As a generalization of the Definitions 45 and 50 the notion digital curve is introduced
to be the boundary or a connected subset of the boundary of a two-dimensional
region.

4.3 Points and Vectors

More notions from [7] are presented in the following section, because they have a
practical meaning for the cell complexes applied to digital geometry.

Definition 51: A point (0-cell) C is said to be strictly collinear with two other
points A and B if the following equality holds:

(xc − xb) · (yb − ya) − (yc − yb) · (xb − xa) = 0

The point C is said to lie to the right from the ordered pair A and B if

(xc − xb) · (yb − ya) − (yc − yb) · (xb − xa) > 0

and it is said to lie to the left from A and B if

(xc − xb) · (yb − ya) − (yc − yb) · (xb − xa) < 0

Definition 52: Consider all ordered pairs of points of a DSS, such that all other
points of the DSS do not lie to the left of the pair. Choose the pair (A, B) with
the greatest absolute difference of the coordinates |xb −xa| or |yb − ya|. If there are
points of the DSS which are strictly collinear with (A, B), choose the pair of such
points which are closest to each other. Denote the points C and D. This point pair
is called the left base of the DSS. The right base may be defined similarly.

The slope M/N of the base is defined by two integers:

M = yd − yc and N = xd − xc

Definition 53: A two-dimensional vector with integer components (x, y) is called
right semi-collinear with another integer vector (n, m) if the following inequalities
hold:
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0 ≤ (x · M − y · N) ≤ M + N − 1

where M and N are numerator and denominator of the irreducible fraction M/N =
m/n. The notion of left semi-collinear vectors may be defined similarly.

Definition 54: The distance d between two points is declared digitally equal to a
number n if the absolute difference between d and n is less or equal to the length
of a pixel’s diagonal (

√
2).

Definition 55: The value of semi-collinearity of a point C relative to an ordered
pair of points (A, B) is declared to be 0 if C is semi-collinear with (A, B). If it is
not semi-collinear, then the value of semi-collinearity is declared to be −1 or +1
depending on whether C lies to the left or to the right of (A, B).

We want to call the readers attention to the fact that the notions ”left” and ”right”
are related to a coordinate system in a mathematical positive order. Hence in the
field of image processing a different coordinate system is used (x-axis points to the
left, y-axis points down), the roles of left and right must be changed.

Definition 56: Two figures F and G are called congruent with each other iff
there exists such a mapping from F to G that the distance between any cells of
G is digitally equal to the distance of their preimages in F and the value of semi-
collinearity of any three points of G is the same as of their preimages in F .
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5 Mappings among Locally Finite Spaces

In the field of mappings among locally finite spaces it is necessary to define a more
general type of function [7]:

Definition 57: A correspondence between two locally finite spaces X and Y or a
many-valued mapping of X into Y is a subset F of ordered pairs (x, y) containing
all cells x ∈ X and some cells y ∈ Y .

Definition 58: A correspondence between X and Y is called a connectivity pre-
serving mapping (CPM) if the image of any connected subset of X is connected.

Definition 59: Let us denote by V (x, y) the connected component of F (x) con-
taining y and by H(x, y) the connected component of F−1(y) containig x. A cor-
respondence F is called simple if for each pair (x, y) ∈ F at most one of the sets
V (x, y) and H(x, y) contains more that one element.

Definition 60: The open hull Op(S) of a subset S of an ACC C is the smallest
open subset of C containing S.

The notion open hull is a generalization of the smallest neighborhood (Definition
8). The open hull of a single cell corresponds to the smallest neighborhood of this
cell.
Let c ∈ C, S ⊂ C, S = {c} : Op(c) = SON(c, C).

Definition 61: The closed hull Cl(S) of a subset S of an ACC C is the smallest
closed subset of C containing S.

Definition 62: The n-neighborhood Un(c) of a cell c ∈ C is an open subset of C
satisfying the following conditions:

1) U0(c) = Op(c) = SON(c)

2) Un+1(c) = Op(Cl(Un(c)))

Definition 63: A many-valued mapping F : X −→ Y from a finite space X into
a finite space Y is called n-isomorphism if for any two cells x1, x2 ∈ X and for any
cells of the images of them y1 ∈ F (x1), y2 ∈ F (x2) the following two conditions are
satisfied:

1) x2 ∈ U0(x1) =⇒ y2 ∈ Un(y1)

2) x2 /∈ Un(x1) =⇒ y2 /∈ U0(y1)
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6 Structured Representation

The next pages contain an illustration of the theory of abstract cell complexes which
is intended to visualize the relations between the notions and theorems. The first
plan is intended to show the notions used in this paper. After that partial plans are
given to visualize the relations between theorems and notions in the appropriate
subfield of the theory of abstract cell complexes.

The following primitives are used:

• Notion: We use a rectangle with the name and the number of the definition
inside to illustrate a defined notion.

1 topological space

• Relation: Notions which are related to each other in any sense are connected
by an arrow. The arrow is directed to the notion which is influenced by the
notion where the arrow begins.

1 topological space 2 homeomorphism

• Theorem: A theorem is illustrated by an rounded rectangle. The arrows
pointing to the theorem come from the definitions of the notions which are
used for the theorem and defined in this framework.

5 ACC

1 topological space

Theorem 1

The notions in the illustration are grouped according to the theory of abstract cell
complexes such that relations between the subfields can be seen. The subfields are:

• classical topology

• digital topology

• manifolds

• combinatorial topology (balls and spheres)

• Cartesian complexes and coordinates

• digital geometry

• mappings between locally finite spaces
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digital circular arc, 17
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digital equal distance, 18
digital half-plane, 16
digital straight line segment, 16
dimension function, 3
disc, digital, 17

elementary subdivision, 13
exterior, 10

frontier
closed, 4
open, 4
simple, 4

genus, topological, 13

half-integers, 15
half-plane, digital, 16
Hausdorff-space, 2
homeomorphism, 2
homeomorphism, combinatorial, 14
homogeneously n-dimensional, 6
hull

closed, 19
open, 19

incidence relation, 5
incidence structure, 7
interior, 10
interlaced, 14
invariant, topological, 2

line
topological, 15

locally finite
cell complex, 3
topological space, 2

manifold, 12
mapping

connectivity preserving, 19
simple, 19

minimum length polygon, 16
Minkowski-distance, 16

n-isomorphism, 19
n-neighborhood, 19
neighborhood

smallest, 4
topological, 3

nonbranching, 6

open, 4
open frontier, 4
open hull, 19

path, n-dimensional, 5
perimeter, 16
proper cell, 13
pseudomanifold, 12

quasi-manifold, 12

region, 6

semi-collinear, 17
separation axioms, 2
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side, 3
simple

cell, 14
frontier, 4
mapping, 19

singularity, 7
skeleton, 7
slope, 17
smallest neighborhood, 4
solid, 6
SON, 4
space, topological, 2
sphere, 13
straight line segment, digital, 16
strictly collinear, 17
strongly connected, 5
subcomplex, 4
subdivision, elementary, 13

toplogical coordinates, 15
topological genus, 13
topological invariant, 2
topological line, 15
topological neighborhood, 3
topological space, 2

value of semi-collinearity, 18
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