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Vessel reconnection
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Vessel connectivity

Connectivity is crucial for vessel identification and classification (i.e.
vein, artery). We need this information for instance for pre-op
planning.

However noise causes disconnections and denoising typically is not
enough to reconnect.

So we need to be more "forceful".



Spatially-variant morphology (SVMM)
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Reconnection must be spatially variant

A natural idea for a morphologist might be to use openings or closings
for reconnecting disconnected vessels.

However, using standard morphology with a spatially invariant
structuring element will not work

(a) Noisy vessels (b) SI closing (c) SV closing



SVMM definition
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SV and adjunction

Defining a SV erosion or dilation is easy

Defining their SV adjunct dilation or erosion (resp.) is not so easy

∀x ∈ L,∀y ∈M, δ(x) ≤ y ⇐⇒ x ≤ ε(y)

We still have δB(I) =
∨

p∈B Ip adjunct to εB(I) =
∧

p∈B̌ Ip

However, we need to consider the full definition of the transpose of
a SE

B̌(x) = {y | x ∈ B(y)}, (1)

In the SI case, B̌(x) = −B(x), but not in the SV case.

It is possible to compute it but inefficient in the SVMM case.

Fortunately we have an alternative.



Adjunct erosion computation
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Spatially variant dilation

This is easy to compute.

Spatially variant adjunct erosion with computed SE

This can be expensive to compute.

Spatially variant adjunct erosion alternative definition

This operator is equivalent to the adjunct erosion, and is as efficient to
compute as the initial dilation.

Spatially variant dilation

This is easy to compute.
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Adjunct erosion computation

ACCV Tutorial, November 20, 2016

Spatially variant dilation

This is easy to compute.

Spatially variant adjunct erosion with computed SE

This can be expensive to compute.

Spatially variant adjunct erosion alternative definition

This operator is equivalent to the adjunct erosion, and is as efficient to
compute as the initial dilation.



More formally: morphology on graphs
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Let (E,Γ) be a graph with vertices E and oriented edges Γ (a.k.a
arcs). if x is a vertex, we denote Γ(x) its successors in the graph.

Let S ∈ E be a subset of E, then

εΓ(S) = {Γ(x), x ∈ S} (2)

Let ψ be an operator on (E,Γ), then we define the dual of ψ for any
subset S of E, as ψ?(S) = ψ(S), where S is the set complement of S.

Then, the adjunct of εΓ is:

δΓ = ε?Γ−1, (3)

where (E,Γ−1) is the symmetric graph of (E,Γ), i.e. where all the
edge orientations have been reversed.



End of formalities

ACCV Tutorial, November 20, 2016

This extends the standard erosions and dilations, which correspond
to Γ being a regular, reflexive, symmetric graph.

E.g, with E arranged in a regular square grid, Γ the 4-connected
reflexive connectivity, this defines the standard erosion / dilation
pair with the 4-connected neighborhood.

Arbitrary structuring elements are defined by the equivalent graph
connectivity.

Openings and closings are defined as usual:

γΓ = δΓ ◦ εΓ (opening) (4)

φΓ = εΓ ◦ δΓ (closing) (5)

Grey-level operators are formally defined by threshold
decomposition, but implemented efficiently with a max or min
operator.



A tubular objects filtering procedure
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Filtering pipeline

Filter the image to eliminate noise with an efficient NLM
implementation (MPI + GPU , 5s for a 200× 200× 200 image).

Detect tubular objects using Frangi’s vesselness

Reconnect vessels with a spatially variant closing.

No problem in theory, however to reconnect vessels we require a
dense direction field.



Direction field
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Dense direction field We need to:

Estimate vessel directions from the Hessian eigenvectors

Robustify these directions by sampling them near the center of the
vessels

Dilate the direction field

Perform the SV closing with a segment oriented along these
directions



SV closing illustration
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SV closing illustration
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SV closing illustration
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SV closing illustration
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SV closing illustration

ACCV Tutorial, November 20, 2016



Visual results
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Eye fundus filtering

Neurite filtering

3D image of vessels in the brainEye fundus filtering



Visual results
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Eye fundus filtering

Neurite filtering



Visual results
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Eye fundus filtering

Neurite filtering

3D image of vessels in the brain



Phantom for validation
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Description and origin

We use a phantom from [8], which is a 100× 100× 100 image used in
a MICCAI workshop.

It is tortuous and vessel-like

grey-level with a parabolic intensity from 200 at the center to 150 at
the edges. The background is 100, consistent e.g. with TOF MRA.

In the following ROC analyses, the triangle indicates best fully-
connected result.



Validation
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Level of noise standard deviation σ = 10Level of noise standard deviation σ = 20Level of noise standard deviation σ = 40Level of noise standard deviation σ = 80

Notice that the filtered phantom remains connected even at very high
noise levels.

Level of noise standard deviation σ = 10
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Validation
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Level of noise standard deviation σ = 10Level of noise standard deviation σ = 20Level of noise standard deviation σ = 40Level of noise standard deviation σ = 80

Notice that the filtered phantom remains connected even at very high
noise levels.



Discussion
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Remarks

Noise reduction achieved with non-local approaches, orientation
measured by vesselness, reconnection achieved by Spatially Variant
morphology.

Combining noise reduction techniques with morphology allows us to
achieve extremely robust results for thin object detection

Publications This work is described in greater detail in [25], as well
as [26, 22, 23, 24, 6, 7, 17].



Discussion and challenges
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This pipeline is effective but requires the tuning of a number of
parameters ;

It requires significant hardware to be sufficiently fast

Vessel detection is limited by the vesselness measure, which is not
very effective

It still needs to be evaluated on larger dataset, e.g. full brain vascular
network, but annotated data is difficult to obtain.



VIVABRAIN project
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Step 1: Extracting the vascular network from brain MRA data

Filtering
Improve images (Denoising, contrast enhancement)

Segmentation
Detecting the vascular network

Post-processing
Reconnexion, quantitative data analysis: directions, diameter, vessel
density ...)



In this talk
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A new filtering method to improve existing segmentation pipeline

2 complementary axes :

Noise reduction

Vascular network contrast enhance-
ment

3D MRA data surface rendering
Maximum intensity

projection



Classical tubular segmentation
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Classical approach using the Hessian



Errors due to scale-space
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Scale-space filtering problem



Errors due to locality
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Scale space methods use local neighborhoods and
are susceptible to misinterpretation at some scales.



Proposed solution
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Scale selection and combination is a challenging problem in
traditional scale-space methods.

One solution is to use semi-local neighborhoods, i.e. that gather
information over long distances at all scales.

We propose the use of paths.



Adjacency graph
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A path, a, is a set of neighboring pixels on a graph defining an
adjacency relation x→ y:

a = (a1, a2, ..., aL) si ak → ak+1

Adjacency graph (black)
and vertical path a of length 4
(blue).



Multiple orientations
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Filtering of an image by a path opening Preserving thin structures
in arbitrary orientations imposes to filter the image by several paths
each using a particular adjacency graph.

The 2D space is discretized in 4 different orientations :



Multiple orientations in 3D
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In 3D, the discrete space is discretized in 7 different orientations :



Path filtering
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Example binary path opening

αL =
∨
{σ(a),a ∈ ΠL(X)}

σL : Set of all pixels belonging to path a.
ΠL(X) : Set of all paths of length L.



Principle
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Path definition relaxation A path can now admit K consecutive
noise pixels between path pixels

This makes it possible to preserve partially disconnected thin/tubular
structures :

Path with L = 10 and K = 1 noise pixel

This notion is different from that of path incompleteness by Heijman et
al, it was proposed by F. Cokelaer [5] and is simpler to implement.



Example
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RPO Example on a synthetic, noisy 2D image (AWGN mean = 0, σ = 20 :

Initial image 50x50px RPO L=10, K=1



The 3D case is more complicated than 2D
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2D Case 2 Types of structures :

Fibres and Blobs

RPO preserves only fibres if blobs
are not too big.

3D Case 3 Types of structures :

Tubes, Planes and Blobs

RPO preserves both tubes and
planes.

An RPO by itself preserves more than just tubes in 3D images.
Another filter is thus necessary to eliminate planar structures.



Principle
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Hypothesis Planar structures should be detected in at least one more
orientation than tubular structures

Test of this hypothesis on 3 synthetic structures :

Tube Plane Half-ellipsoid surface



Hypothesis testing
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Test : Filtering 100 3D images of each structure and measuring the
number of RPO orientations still containing the structure after filtering

Histogram of the number of orientations preserving the synthetic
structure:

Tubes Planes Half-ellipsoids



Methodology
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New operator
We order the result of each RPO orientation pixelwise and compute

RORPO = RPO1 −RPOi

RPO1 : Result of standard RPO (max of all RPOs)
RPOi : The i− th rank of the RPO.



Robustness test
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We compute the RORPO error rate on 100 random synthetic structure
of each type.

%error = nberror
nbpixels

× 100

nberror: number of false negative pixels for the tubes and of false
positifs for the planes and half-ellipsoids.

Tubes (m = 4%) Planes (m = 0%) Half ellipsoids (m = 4%)



What is a multi-scale approach ?
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Multiscale Principle
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Comparisons
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We performed qualitative comparisons of various methods according
to four criteria on a full cerebral MRA

Capacity to reduce background noise

Capacity to detect large blood vessels

Capacity to detect small blood vessels

Presence of artifacts

RORPO with classical adjacencies and a multiscale approach based on
path lengths seems to provide the best compromise.



Computing directions from RORPO
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Computing directions from RORPO can be done by averaging the

directions of high response.



Orientation results (in 2D)
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Orientation feature in 2D



Brain MRA result
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Initial image MIP Length-based multiscale RORPO



Comparison with Frangi vesselness
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Proposed method Optimized Frangi vesselness



Quantitative comparison
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(a) CCM=0.605, (b) (c)
Dice=0.634

Synthetic image: (a) maximum intensity projection and (b) isosurface.
(c) Ground truth.



Quantitative comparison
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Filtering response

(a) CCM=0.884, Dice=0.893 (b) CCM=0.706, Dice=0.730 (c) CCM=0.655, Dice=0.654

Filtered synthetic image: maximum intensity projection. (a) RORPO.
(b) Frangi’s vesselness. (c) and RPO-top-hat.



Quantitative comparison - ROC analysis
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(e)

ROC curves on synthetic data. (a) Comparison of the three filters, plus
the native image. (b) Noise robustness of the RORPO filter.



Quantitative Comparison
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MICCAI Rotterdam Coronaries Database
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ROC curves of RORPO and Frangi’s Vesselness on the Rotterdam
repository. For both filtering the central curve is the mean ROC curve
and the two others are the mean plus or minus one standard deviation

ROC curve.



Quantitative comparison, synthetic data
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Three-way ROC analysis RORPO vs. OOF [11],
HDCS [13] and Frangi Vesselness (FV)



Quantitative comp., Heart Coronaries
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Ground truth (a) : RORPO (b), OOF [11] (c), Frangi (d)



MRA Result
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Initial image Multiscale RORPO



Orientation feature 3D
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Orientation feature in 3D, Heart data: RORPO (a)
vs Frangi Vesselness (b)



Tubular structures segmentation

ACCV Tutorial, November 20, 2016

So far we have proposed a solution for curvilinear structure filtering.

Segmentation of more complex structures that include
tubes/cylinders can be built from this.

We propose to use a variational framework by improving Total
Variation (TV) to include a directional component.



Variational framework
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We consider a convex variational framework

min
u∈X

F (u, f) + λG(u). (6)

Here F is a data fidelity term and G a regularization.

f is the input data and u the desired result.

Typically F is associated to a noise model and G to an image model.

A common image model is the Total Variation (TV)



Standard TV
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This is isotropic standard TV regularization term (in 2D):

TV(u) = ‖∇u‖2,1 =
∑

0≤i,j<N

√
((∇u)xi,j)

2 + ((∇u)yi,j)
2 (7)

where ∇u =
(
(∇u)x, (∇u)y

)
is the 2D gradient.

It is classical in mathematics, and was proposed for image
regularization in [18] (ROF model).



Directional TV
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We define a directional gradient, ∇D ∈ Xp:

We first define a span (v1, . . . , vp) of p unitary vectors.

This span contains all the discrete undirected orientations in a k × k
neighborhood

then:

∇Du =
(
D1 ◦ (∇du)1, · · · , Dp ◦ (∇du)1

)
(8)

(∇Du)i,j = D1
i,j(∇du)1

i,jv1 + · · ·+Dp
i,j(∇du)pi,jvp (9)

with Dq ∈ X, 1 ≤ q ≤ p a weight image such that:

Dq
i,j = dqi,jΦi,j + (1− Φi,j) (10)



Link with RORPO
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Φ ∈ X is a vesselness-like intensity feature normalized to the interval
[0, 1]

(di)i∈J1,pK, are computed from an orientation field

Span of vectors in a 3× 3 neighborhood.

We used the RORPO response as the vesselness feature and the
orientation field computed from RORPO.



Directional TV idea
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Directional TV idea

Standard TV will penalize all edges identically; weighted TV may
attempt to penalize edges less in a curvilinear object.

A directional feature will not penalize edges inside a curvilinear object



Directional TV edges

ACCV Tutorial, November 20, 2016

Theoretical edge weights

Thin, curvilinear object are all edges, and so are easily filtered out in
standard/weighted TV.

A directional TV will filter only along the direction of the curvilinear
object, preserving it.



Segmentation model

ACCV Tutorial, November 20, 2016

Our model is base on TVD, as follows:

minimize
u∈[0,1]N×N

〈cf , u〉F + λ‖∇Du‖2,1 (11)

‖∇Du‖2,1 is the directional Total Variation

〈cf , u〉F is the Chan et al. data fidelity term [3] where (cf)i,j =
(c1 − fi,j)2 − (c2 − fi,j)2 and 〈u, v〉F is the Frobenius product.

The scalars c1 and c2 are respectively the foreground and background
constant and f is the initial image.



DRIVE segmentation result
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2D Results on DRIVE



DRIVE result details
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2D Result on DRIVE (details) top: standard TV ; bottom: directional TV



DRIVE numerical results
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Our segmentation result compare favourably with the state of the art.
Note that some learning-based approaches can still outperform these
results.

TP TN Acc
Standard TV 0.656 0.985 0.9421
Directional TV 0.690 0.981 0.9434
Staal [20] - - 0.9442
Human observer - - 0.9470

Quantitative segmentation results on the DRIVE database.



Conclusion
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We have studied a thin object filtering methods called RORPO

Associated with a multiscale approaches based on path length

Our method is effective at significantly reducing background noise
while simultaneously suppressing non-tubular structures.



Perspectives
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Quantitative evaluation of our results :

Use phantoms produced by VascuSynth

Use ground truth from heart MRA data.



Perspectives
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Produce images of scales

Adapt the path operator framework to the max-tree/min-tree
framework

This would allow discriminating objects on more complex measures
than mere length

Think about incorporating robustness to max-trees / min-trees



Literature on path operators
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Definitions and early algorithms [2, 9, 10]

Faster algorithms [1, 21]

Extension to 3D and regularisation [12]

RPO and 3D [5], [4]

Applications [27, 28, 29, 19]

RORPO [15, 16, 14]
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