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Digital sets/objects

Digital set

Set of points in Z"
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Digital sets/objects

Digital set

Set of points in Z"

Digital object

Set of points in Z" + topology
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What can we do from here?

How to compute the circularity, How to compute the curvature,
area of these objects ? local thickness on this object ?

[Levallois 15, ANR digitalSnow, laboratoires LIRIS

LAMA / 3SR / MétéoFrance / CEN - CNRM GAME]
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Plan

Transformations

Measurements
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Outline

Transformations
Distance Transform
Medial axis
Skeleton
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Plan

Transformations
Distance Transform
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Distance Transform
The problem

Given a digital set S, label each p € S with
the distance to the closest point q ¢ S.
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Distance Transform
The problem

Given a digital set S, label each p € S with
the distance to the closest point q ¢ S.

Applications

= signed distance field

» Measures : thickness, differential
operators on the boundary

» digital image processing : blurring effects,
skeleton
» motion planning, pathfinding

» font smoothing, rendering

= distance between digital points?
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Distance - first trial

Let p, g be two points in Z".
What is the distance between p and g ?

Euclidean distance?

d2(p,q) = /21 (pi — qi)?
= not always an integer!... and we don't like roundings...
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Distance - first trial

Let p, g be two points in Z".
What is the distance between p and g ?

Euclidean distance?

d2(p,q) = /21 (pi — qi)?
= not always an integer!... and we don't like roundings...

d;, d distances

di(p,q) =71 lpi —ail  dw(p,q) = maxizi.n|pi — qil
= integer values... but what are the balls like ?
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Distance - first trial

Let p, g be two points in Z".
What is the distance between p and g ?

Euclidean distance?

d2(p,q) = /21 (pi — qi)?
= not always an integer!... and we don't like roundings...

di, d distances

di(p,q) = Xy lpi—ail  dwo(p,q) = maxizi.n|pi — il
= integer values... but what are the balls like ?
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Chamfer distances

Idea

A finite set of displacements + a weight for each displacement.

Displacements

2 2l b 2b|c|2a|c|2b
a|0]a a a c|blalb]c
blalb 2a|a| 0 |a|2a

c|b|la|b|c

a=1=d; a=b=1=d, 2b | c|2a|c|2b

Distance

Distance between p and g = weight of the “lighter” path using only
prescribed displacements.
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How to set the weights?
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Some conditions on the weights

Axioms

1. d(p,q) > 0,d(p,q) = 0 < p = g (positive, definite)

2. d(p,q) = d(q, p) (symmetric)
3. Vre E, d(p,q) <d(p,r)+d(r,q) (triangular inequality)

Conditions
3x3 5x5
0<a<b<2a 0<2a<c<a+b

7 3b < 2c
a b GV a

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab



Other integer distances

Other path-based distance
» neighbourhood sequences : weights and displacements vary at
each step
“Integer” Euclidean distance
» store the vector pg

» squared Euclidean distance

Pros and cons

distance exact | isotropic | storage | DT
path-based distances X X v v
vector \/ v X \/
squared Euclidean v v X v

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis
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Distance transform with path-based distances

First idea

weighted graph representation + shortest path algorithm (Dikjstra
for instance)
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Distance transform with path-based distances

First idea

weighted graph representation + shortest path algorithm (Dikjstra
for instance)

Second idea

Decompose the mask into several sub-masks + raster scan for each
sub-mask =- propagate the min values
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Distance transform with path-based distances

Second idea

Decompose the mask into several sub-masks + raster scan for each
sub-mask = propagate the min values

Example with 3 x 3 chamfer distance
DT(i,j) = . in (DT(i+ koj + 1) + weight(k. 1))

,I)Emasi

Initialisation :

Fa—
@E 449 DT(i,j)=0 si (i,j)¢S

DT(i,j)=+oc si (i,j)€S
p——

Complexity : O(m.N")
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Distance transform with path-based distances

Second idea

Decompose the mask into several sub-masks + raster scan for each
sub-mask = propagate the min values

Example with 3 x 3 chamfer distance
DT(i,j) = . in (DT(i+ koj + 1) + weight(k. 1))

,)Emas
Initialisation :
@E 4/§> DT(i,j)=0 si (i,j)¢S$S
— DT(i,j)=+o0 si (i.j)€S
@‘_l’

Complexity : O(m.N")
Note : separable algorithm in O(log® m.N?) in 2D
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Distance transform with Squared Euclidean distance

The problem
Let p = (i,j) € S C Z2. We have :
DT(p) = min{d3(p, q)}
q¢S
=

DT(i,j)= min {(k—i)*+(/-j)*}

a(k.NgS
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Distance transform with Squared Euclidean distance

The problem
Let p = (i,j) € S C Z2. We have :

DT(p) = Tég{dzz(p, q)}

=

DT(i,j)= min {(k—i)*+(/-j)*}

a(k,)¢S
Let's decompose

We can rewrite :

opty(i.f) = _ min, {(k— 1)’}

and then

DT(i) = _min {(1—J)? +opti(i.1)}
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Distance transform with Squared Euclidean distance

The problem
Let p = (i,j) € S C Z2. We have :

DT(p) = Tég{dzz(p, q)}

=

DT(i,j)= min {(k—i)*+(/-j)*}

a(k,)¢S
Let's decompose

We can rewrite :

opty(i.f) = _ min, {(k— 1)’}

and then

DT(i) = _min {(1—J)? +opti(i.1)}

= paradigm = separable algorithm
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Distance transform with d? - example

25|36
1
4] 9

Digital set S in white.

16
1
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Distance transform with d? - example

25|36
1
4] 9

Digital set S in white.

16
1

Complexity : O(N?) for a 2D N x N domain = O(N?) for a nD
N" domain.

Note : works also for any distance deriving from a Ly-norm (in
particular di, d).
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Images...

[Coeurjolly et al. 07] [DGtal Library]
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Plan

Transformations

Medial axis
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Several definitions

Seminal definition

Meeting points of a grassfire initialized on the
shape boundary

Modern definitions

> set of centers of maximal balls

> set of points having at least two closest points on the boundary
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Several definitions

Seminal definition

Meeting points of a grassfire initialized on the
shape boundary

Modern definitions
> set of centers of maximal balls
> set of points having at least two closest points on the boundary

= For a shape F C R?, these definitions lead to a I-dimensionnal
topological centered equivalent of F
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Several definitions

Seminal definition

Meeting points of a grassfire initialized on the
shape boundary

Modern definitions

> set of centers of maximal balls

> set of points having at least two closest points on the boundary

= For a shape F C R?, these definitions lead to a I-dimensionnal
topological centered equivalent of F

For a digital set/object S C 7

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal
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Several definitions

Seminal definition [gum 67

Meeting points of a grassfire initialized on the
shape boundary

Modern definitions

> set of centers of maximal balls

> set of points having at least two closest points on the boundary

= For a shape F C R?, these definitions lead to a I-dimensionnal
topological centered equivalent of F

For a digital set/object S C 7

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal
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Medial axis and Distance Transform

Link
For a digital set S, and p € S, DT (p) = radius of the largest ball
centered on p and included in S.

= Medial Axis of S = local maxima of the DT

[K. Palagyi, http ://www.inf.u-szeged.hu/ palagyi/skel/skel.html]
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Algorithm depends on the distance...

Path-based distance

Idea : to check whether a point p € S belongs to the Medial Axis,
it is enough to compare with a few neighbours
= Use a hash table
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Algorithm depends on the distance...

Path-based distance

Idea : to check whether a point p € S belongs to the Medial Axis,
it is enough to compare with a few neighbours
= Use a hash table

Example with the Chamfer distance

LUT(V,r) = min{r'|B(O,r) C B(O + v,r')}

% pEMA <= DT(p+¥) < LUT(V,DT(p)), VVeV.

Neighbourhood V7 : for dso, V = {(£1,£1),(0,+1), (£1,0)}.
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Algorithm depends on the distance...

Squared Euclidean distance

Cannot pre-define a (limited) set of neighbours and radii
= New tool : power diagram
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Algorithm depends on the distance...

Squared Euclidean distance

Cannot pre-define a (limited) set of neighbours and radii
= New tool : power diagram

Rewriting S

Lapalissade : S = U B(p, DT(p))
peES

= {(i,J) 1 3p, (i =)+ ( —yp)* < DT(p)}
= {(i,j) | 3p, DT(p) — (i —xp)* = (j — yp)* > 0}

paraboloid
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Algorithm depends on the distance...

Rewriting S
Lapalissade : S = {(i,j) | 3p, DT(p) — (i — xo)* — (j — yp)* > 0}

paraboloid

= Highest paraboloids are enough to define S : others correspond to
non-maximal balls
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Algorithm depends on the distance...

Rewriting S
Lapalissade : S = {(i,j) | 3p, DT(p) — (i — xo)* — (j — yp)* > 0}

paraboloid

= Highest paraboloids are enough to define S : others correspond to
non-maximal balls
= algorithmic tool from computational geometry = Power Diagram
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Medial Axis and Digital Set reconstruction

Property

S is exactly defined by the set of centers of the medial axis + radii
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Medial Axis and Digital Set reconstruction

Property

S is exactly defined by the set of centers of the medial axis + radii

Question

Is this set of minimum cardinality ?
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Medial Axis and Digital Set reconstruction

Property

S is exactly defined by the set of centers of the medial axis + radii

Question

Is this set of minimum cardinality ?

Answer

No ! Maximal balls property only ensures that no ball is included in
another, but a ball can be included in the union of others.
Bad news : the problem is NP-complete
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Medial Axis and Digital Set reconstruction

Property

S is exactly defined by the set of centers of the medial axis + radii

Question

Is this set of minimum cardinality ?

Answer

No ! Maximal balls property only ensures that no ball is included in
another, but a ball can be included in the union of others.
Bad news : the problem is NP-complete

= simplification algorithms

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab



Medial Axis and Digital Set reconstruction

Objet F = AM(S) | F RAGNEMALM ET AL. F Greedy

56 (-46%) [<0.01s] 66 (-36%) [< 0.01s]

S %

795 (-38%) [0.1s] 820 (-36%) [0.19s]

&
17238 6177 (-64%) [48.53s] | 6553 (-62%) [57.79]
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Plan

Transformations

Skeleton
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Several definitions

Seminal definition [gum 67

Meeting points of a grassfire initialized on the
shape boundary

Modern definitions

> set of centers of maximal balls

> set of points having at least two closest points on the boundary

= For a shape F C R?, these definitions lead to a I-dimensionnal
topological centered equivalent of F

For a digital set/object S C 7

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal
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Skeleton

Let O be a digital object = digital set + topology (adjacency
relations).

Principle
Withdraw some points of O (one by one) without “modifying the
topology"” :

» homotopy equivalence

» or homeomorphism ?
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Homotopy equivalence - Simple points

Simple point
A point p € O is simple iff O — {p} is homotopy equivalent to O.

In practice - Constraints

v

a connected component of O cannot be deleted

v

a connected component of O cannot be disconnected
» no connected component of O¢ can be created

> no connected components of O¢ can be merged

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab



Example of simple points
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Example of simple points

Digital Object O is 4-connected.
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Example of simple points

Digital Object O is 8-connected.

'

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab



Characterization of simple points
From the definition, the characterization is global
= at least O(n) to test one point in a domain of n points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

P Neighbourhood of p

= characterization in O(1)!
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Characterization of simple points
From the definition, the characterization is global
= at least O(n) to test one point in a domain of n points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

1 connected component for O
1 for O€
= p is simple

= characterization in O(1)!
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Characterization of simple points

From the definition, the characterization is global
= at least O(n) to test one point in a domain of n points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

O is 4-connected
2 connected component of O 4-connected to p
2 connected component of O¢ 8-connected to

p
= p is not simple

= characterization in O(1)!
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Characterization of simple points

From the definition, the characterization is global
= at least O(n) to test one point in a domain of n points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

O is 8-connected
1 connected component of O 8-connected to p
1 connected component of O¢ 4-connected to

p
= p is simple

= characterization in O(1)!
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Thinning algorithm

Simple sequential removal

While there exist p simple in O
» O+ O\p

Order matters

How to choose p?

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab



Breadth-first thinning algorithm

Data: Digital Object O

Result: Digital Object Sk(O)

Sk(0) + O

Queue : SP < {p € O | p is simple for O}
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Breadth-first thinning algorithm

Data: Digital Object O
Result: Digital Object Sk(O)
Sk(0) «+ O
Queue : SP < {p € O | pis simple for O}
while SP # () do
Next < )
forall the p € SP do
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Breadth-first thinning algorithm

Data: Digital Object O
Result: Digital Object Sk(O)
Sk(0) + O
Queue : SP < {p € O | pis simple for O}
while SP # () do

Next < )

forall the p € SP do

if p is simple for Sk(O) then
SK(0) < Sk(0)\ {p}
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Breadth-first thinning algorithm

Data: Digital Object O
Result: Digital Object Sk(O)
Sk(0) «+ O
Queue : SP < {p € O | pis simple for O}
while SP # () do
Next < )
forall the p € SP do
if p is simple for Sk(O) then
Sk(0) < Sk(0)\ {p}
forall the g € Sk(O), q neighbour of p do
Next < Next U {q}
end
end
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Breadth-first thinning algorithm

Data: Digital Object O
Result: Digital Object Sk(O)
Sk(0) «+ O
Queue : SP < {p € O | p is simple for O}
while SP # () do
Next + )
forall the p € SP do
if p is simple for Sk(O) then
Sk(0) < Sk(0)\ {p}
forall the g € Sk(O), q neighbour of p do
Next < Next U {q}
end
end
SP <+ 0
forall the p € Next do
if p is simple for Sk(O) then
SP + SPU{p}
end
end
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Breadth-first thinning algorithm

Data: Digital Object O
Result: Digital Object Sk(O)
Sk(0) «+ O
Queue : SP < {p € O | p is simple for O}
while SP # () do
Next + )
forall the p € SP do
if p is simple for Sk(O) then
Sk(0) < Sk(0)\ {p}
forall the g € Sk(O), q neighbour of p do
Next < Next U {q}
end
end
SP <+ 0
forall the p € Next do
if p is simple for Sk(O) then
SP + SPU{p}
end
end

Note : A priority function can also be used (for instance the Distance Transform).
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Preserving the shape

(.
Homotopy equivalence = any digital object O % )/
with a single connected component reduces to

a single point!
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Preserving the shape

(.
Homotopy equivalence = any digital object O % f
with a single connected component reduces to

a single point!

Anchor points

Predicate defining un-removable points, for
instance : points with one neighbour, points of
the medial axis

|f p is simple for Sk(O) and not Anchor(p)
then
Sk(0) « Sk(0)\ {p}

+ huge literature on the subject (see PhD thesis of [Chaussard 10]
for instance)
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Cellular grid space framework

In higher dimension, the skeleton does not
always have nice properties (remaining 3d
parts for instance).
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Cellular grid space framework

In higher dimension, the skeleton does not
always have nice properties (remaining 3d
parts for instance).

d)

mZc—-Homz=2

(=5

[Image from Chaussard 10] [see also Mazo 11]
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Outline

Measurements
Multigrid convergence
Area estimation
Tangent, normal, length estimation
Curvature and higher derivatives estimation
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Goal : compute geometric quantities

Consider a family F of shapes in R” (fulfilling given properties).
Global geometric quantities

For a given shape S € F, compute :
> its area (volume)

> its perimeter (area of its boundary)

Local geometric quantities

For any point x € 95, § € F, compute :
> its tangent, normal vector

> its curvature
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Plan

Measurements
Multigrid convergence
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Is the computation accurate, truthful ?

Consider :
> a grid G of resolution 1/h, h > 0 (size of the pixels).
» a digitization process Dig), such that Dig,(S) = S N (hZ?) is
the digitized version of S € F
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Is the computation accurate, truthful ?

Consider :
> a grid G of resolution 1/h, h > 0 (size of the pixels).
» a digitization process Dig), such that Dig,(S) = S N (hZ?) is
the digitized version of S € F

What happens when h — 07
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Global geometric estimators - multigrid convergence

Digy,/5(5) Digj,/4(5)

Multigrid convergence

Let F be a family of shapes. The geometric estimator € is said to
be multigrid convergent for F toward the geometric descriptor ¢ iff
vSeF
lim |é(Dig,(5)) — €(S)| < 7s(h)
h—0
/llno 7s(h) =0

The speed of convergence is given by Ts(h).
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Local geometric estimators - multigrid convergence

Local multigrid convergence

Let F be a family of shapes. The geometric estimator € is said to
be multigrid convergent for F toward the geometric descriptor e iff
VS € F,vx € 0S,

Yy € dDig,(S) with |ly — x[[1 < h,

€(Digp(5),y) — (S x)| < 7s.x(h)

li <(h) =
Ay Tox(h) =0

The speed of convergence is given by 7s ,(h).
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Plan

Measurements

Area estimation
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First example : area estimation

Consider the shadow digitization scheme Dig,,.

For a shape S € F, let's count the number of points in Dig,(S),
and define é(Dig,(S)) = h%.|S N (hZ?)|.
» For the family of convex shapes F, 7x(h) = O(h) (coussviichiey
» For the family of C3-convex shapes F, 7x(h) = O(h%Jre) [Huxley

90]

Speed of convergence
h |1 0.1 0.01 0.001
hit | 1 0.04328 0.00187 0.00008
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Plan

Measurements

Tangent, normal, length estimation
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Length estimation - first trial
Let C be a digital curve, defined by a sequence of elementary
displacements.
Question

Can we define a convergent length estimator of C by counting the

number of elementary displacements ?

Even if the Hausdorff distance between the digital boundary and
the shape boundary 95 tends towards 0 when h — 0, “stairs
effect” remains.

Remark
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Local weights - Stair effect

Let's try for different digitization schemes.
“Shadow"” of a shape

Let S be a disk of radius %, and Dig,, be the “shadow”.
Let C be 9Dig,(S).

L 1

T
T
it

sl
I

Length of C tends to 4 instead
of !

!
|
t

wpEsl
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Local weights - Stair effect

Let's try for different digitization schemes.
“Shadow"” of a shape

Let S be a disk of radius %, and Dig,, be the “shadow”.
Let C be 9Dig,(S).

L 1

sl
I

T
T
it

Length of C tends to 4 instead
of !

!
|
t

wpEsl

Digitization of a segment

Let S be a segment of slope « € [0,1] and length /.
Dig,(S) is the digitization that “chooses the closest point”.

i ! Length of S is equal to

1+\/2 Vn > 1 instead of
5\2f |
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Doomed local weights

Local weights estimator

» Consider the decomposition of C into parts of m elementary
displacements such that C = wiws ... wy\

> Give a weight p(.) to each w;

> Define the estimator €(C) = > I, p(w;)
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Doomed local weights

Local weights estimator

» Consider the decomposition of C into parts of m elementary
displacements such that C = wiws ... wy\

> Give a weight p(.) to each w;

> Define the estimator €(C) = > I, p(w;)

Result when C = Dig,(S), S a straight segment

For all m and all p(.), the set of segments for which the estimator converges to
the length of S is countable. Meaning that most of the time, the estimator

does not converge.
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Doomed local weights

Local weights estimator

» Consider the decomposition of C into parts of m elementary
displacements such that C = wiws ... wy\

> Give a weight p(.) to each w;
> Define the estimator €(C) = > I, p(w;)

Result when C = Dig,(S), S a straight segment

For all m and all p(.), the set of segments for which the estimator converges to
the length of S is countable. Meaning that most of the time, the estimator
does not converge.

Another solution ?

Decompose C into parts such that the “length” of the parts adapts itself to the
curve. = use digital segments
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Length estimation through polygonalization

Principle

Compute a polygon from the digital curve C using
digital straight segments. it
= length of C = length of the polygon.
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Length estimation through polygonalization

Principle

Compute a polygon from the digital curve C using
digital straight segments. )
= length of C = length of the polygon.

Several approaches

> greedy as long as possible DSS

» Miminum Length Polygon : shortest curve that separates inside
from outside

» Faithful Polygon : polygon that preserves convex and concave parts

Multigrid convergence (theoretical and/or experimental) in O(h).
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Tangent estimation

Let C = p; be a digital curve in Z2.
Goal : estimate the first derivative for all p € C.
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Tangent estimation

Let C = p; be a digital curve in Z2.
Goal : estimate the first derivative for all p € C.
Maximal Digital Segment

A digital segment S is maximal on C if there is no segment S C C such
that S; C S.
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Tangent estimation

Let C = p; be a digital curve in Z2.
Goal : estimate the first derivative for all p € C.

Maximal Digital Segment

A digital segment S is maximal on C if there is no segment S C C such
that S; C S.

Algorithmically

> Maximality can be tested locally, checking S;_1; and S; j11

> algorithms to add or remove a point at the front or at the back of a
DSS in O(1)

= algorithm in O(|C|) to compute all the maximal DSS on C.
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Maximal Digital Segments

S

Swiss knife

> convergent tangent estimator
» convergent length estimator

> convex, concave parts, extremal points
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Maximal Digital Segments

s Digy(5)  Digg(5)  Digy(S)

Swiss knife

> convergent tangent estimator
» convergent length estimator

> convex, concave parts, extremal points
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Maximal Digital Segments

Theorem

Let x € 9S. The direction of any maximal digital segment of Dig,(S)
that covers x converges to the tangent at x when h — 0.
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Maximal Digital Segments

Theorem

Let x € 9S. The direction of any maximal digital segment of Dig,(S)
that covers x converges to the tangent at x when h — 0.

Convergent tangent estimator
> choose any maximal digital segment

> use a convex combination of all the maximal digital segments
(A-MST)
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Maximal Digital Segments

Theorem

Let x € 9S. The direction of any maximal digital segment of Dig,(S)
that covers x converges to the tangent at x when h — 0.

Convergent tangent estimator
> choose any maximal digital segment

> use a convex combination of all the maximal digital segments
(A-MST)

Convergent length estimator
> “Digitize” [ t(s)ds : Length(Dig,(5)) = Y ecopig, (s) H(€)-terem(e).

» Convergence speed : O(h3) (O(h?) experimentally)
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Plan

Measurements

Curvature and higher derivatives estimation
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Curvature

Let v(s) be a (at least C?) curve. The curvature  along 7 is given
by :

Definitions

(i) norm of the second derivative k(s) = |%

(i) derivative of the tangent orientation (s) = %
(iii) inverse of the osculating circle radius k(s) = %

W)
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Families of digital curvature estimators (1/2)

Many algorithms that mimic these definitions :

» in (i) (ii) convolutions (local weighted means) are used to
mimic derivatives
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Families of digital curvature estimators (1/2)

Many algorithms that mimic these definitions :

» in (i) (ii) convolutions (local weighted means) are used to
mimic derivatives

» in (ii) (iii) digital segments or digital circular arcs are used to
compute tangents or osculating circles
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Families of digital curvature estimators (1/2)

Many algorithms that mimic these definitions :

» in (i) (ii) convolutions (local weighted means) are used to
mimic derivatives

» in (ii) (iii) digital segments or digital circular arcs are used to
compute tangents or osculating circles
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Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence
difficult to obtain
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Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence
difficult to obtain

Other estimators :
> fitting of higher order polynomial

> multigrid convergent estimation of higher order derivatives in
O(h771) for k-th derivative
> not parameter-free

e 1”1”11* »W
H

|
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Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence
difficult to obtain

Other estimators :
> fitting of higher order polynomial

> multi%rid convergent estimation of higher order derivatives in
O(h771) for k-th derivative
> not parameter-free

> integral invariant estimator
> multigrid convergent in O(h3)
» can be parameter-free

e 1”1[“ »W
H

|
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For 3D Digital Objects

N - . 1
» Normal vector estimation : multigrid convergent in O(hs) and
Stable a|g0rlthm [Cuel et al. 14, ..]]

» Surface area : as for length estimation, integrate normals
» Mean and Gaussian curvature : integral invariant estimators
. . 1
are multigrid convergent in O(h3) (cocurioly e ol 14 Levaliois 15
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The last words...

A short and incomplete overview

For instance, what about :
» more “complex” digital primitives : curves in 3D, circles, etc

» affine transformations : how to perform a rotation ?
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The last words...

A short and incomplete overview

For instance, what about :
» more “complex” digital primitives : curves in 3D, circles, etc

» affine transformations : how to perform a rotation ?
Books to go further

> Géométrie discrete et images numériques, 2007. Collective
book (in french).

» Digital Geometry, 2004. R. Klette & A. Rosenfeld (in english)
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DGtal

Digital Geometry Tools and Algorithms

t3kal

> aim at gathering digital geometry algorithms in a common
programming framework

TTTT
ITTT

» open-source, collaborative library

> Let's try it during lab session this afternoon!
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Thank you'!
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