

Grenoble | images | parole | signal | automatique | laboratoire

Digital geometry: digital objects analysis

Isabelle Sivignon, Yan Gérard

Gipsa-lab, Grenoble - LIMOS, Clermont-Ferrand

UMR 5216

Digital sets/objects

Digital set

Set of points in \mathbb{Z}^n

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

2/ 57

A B > 4
 B > 4
 B

Digital sets/objects

Digital set

Set of points in \mathbb{Z}^n

Digital object

Set of points in \mathbb{Z}^n + topology

2/57

What can we do from here?

How to compute the *circularity*, *area* of these objects?

How to compute the *curvature*, *local thickness* on this object?

[Levallois 15, ANR digitalSnow, laboratoires LIRIS /

LAMA / 3SR / MétéoFrance / CEN - CNRM GAME]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Transformations

Measurements

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

4/57

イロト イヨト イヨト イヨト

э

Outline

Transformations

Distance Transform Medial axis Skeleton

Measurements

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

□ > < □ > < □ > < □ >
 5/ 57

э

→

Plan

Transformations Distance Transform

Medial axis Skeleton

Measurements

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

6/57

イロト イヨト イヨト イヨト

э

Distance Transform

The problem

Given a digital set S, label each $p \in S$ with the distance to the closest point $q \notin S$.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

7/57

.∃ →

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Distance Transform

The problem

Given a digital set S, label each $p \in S$ with the distance to the closest point $q \notin S$.

Applications

- \Rightarrow signed distance field
 - Measures : thickness, differential operators on the boundary
 - digital image processing : blurring effects, skeleton
 - motion planning, pathfinding
 - font smoothing, rendering

 \Rightarrow distance between digital points?

[http://gamma.web.unc.edu/]

[Glyphy]

Distance - first trial

Let p, q be two points in \mathbb{Z}^n . What is the distance between p and q?

> Euclidean distance? $d_2(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$ \Rightarrow not always an integer !... and we don't like roundings...

> > (a)

Distance - first trial

Let p, q be two points in \mathbb{Z}^n . What is the distance between p and q?

> Euclidean distance? $d_2(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$ \Rightarrow not always an integer !... and we don't like roundings... d_1, d_{∞} distances $d_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| \quad d_{\infty}(p,q) = \max_{i=1..n} |p_i - q_i|$ \Rightarrow integer values... but what are the balls like?

Distance - first trial

Let p, q be two points in \mathbb{Z}^n . What is the distance between p and q?

> Euclidean distance? $d_2(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$ \Rightarrow not always an integer !... and we don't like roundings... d_1, d_{∞} distances $d_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| \quad d_{\infty}(p,q) = \max_{i=1..n} |p_i - q_i|$ \Rightarrow integer values... but what are the balls like?

8/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Chamfer distances

Idea [Montanari 68, Borgefors 84]

A finite set of displacements + a weight for each displacement.

Displacements

	а			b	а	b		2 <i>b</i>	С	2 <i>a</i>	С	2 <i>b</i>
а	0	а		а	0	а		С	b	а	b	с
	а			b	а	b		2 <i>a</i>	а	0	а	2 <i>a</i>
								С	b	а	b	С
a =	1 =	$\Rightarrow d_1$	a =	$a=b=1\Rightarrow d_\infty$					С	2 <i>a</i>	С	2 <i>b</i>

Distance

Distance between p and q = weight of the "lighter" path using only prescribed displacements.

イロト イポト イヨト イヨト

9/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

How to set the weights?

[Géométrie discrète et images numériques, ouvrage collectif, 2007]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Some conditions on the weights

Axioms

1.
$$d(p,q) \ge 0, d(p,q) = 0 \Leftrightarrow p = q$$
 (positive, definite)
2. $d(p,q) = d(q,p)$ (symmetric)
3. $\forall r \in E, d(p,q) \le d(p,r) + d(r,q)$ (triangular inequality)

Conditions

11/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Other integer distances

Other path-based distance

neighbourhood sequences : weights and displacements vary at each step [Rosenfeld 68, Strand 07, Normand et al. 2013]

"Integer" Euclidean distance

- store the vector \vec{pq}
- squared Euclidean distance

Pros and cons

distance	exact	isotropic	storage	DT
path-based distances	×	×	\checkmark	 Image: A set of the set of the
vector	 ✓ 	\checkmark	×	\checkmark
squared Euclidean	 Image: A second s	\checkmark	×	\checkmark

(a)

12/57

First idea

weighted graph representation + shortest path algorithm (Dikjstra for instance)

A D > A B > A B

13/57

- ∢ ⊒ →

First idea

weighted graph representation + shortest path algorithm (Dikjstra for instance)

Second idea

Decompose the mask into several sub-masks + raster scan for each sub-mask \Rightarrow propagate the min values

イロト イポト イヨト イヨト

Second idea

Decompose the mask into several sub-masks + raster scan for each sub-mask \Rightarrow propagate the min values

Example with 3 × 3 chamfer distance [Rosenfeld 66, Montanari 68] $DT(i,j) = \min_{(k,l) \in mask} (DT(i+k,j+l) + weight(k,l))$

DT(i,j) = 0 si $(i,j) \notin S$ $DT(i,j) = +\infty$ si $(i,j) \in S$

イロト イポト イヨト イヨト

13/57

Complexity : $\mathcal{O}(m.N^n)$

Second idea

Decompose the mask into several sub-masks + raster scan for each sub-mask \Rightarrow propagate the min values

Example with 3 × 3 chamfer distance [Rosenfeld 66, Montanari 68] $DT(i,j) = \min_{(k,l) \in mask} (DT(i+k,j+l) + weight(k,l))$

Initialisation :

$$DT(i,j) = 0$$
 si $(i,j) \notin S$
 $DT(i,j) = +\infty$ si $(i,j) \in S$

13/57

Image: A matrix

Complexity : $\mathcal{O}(m.N^n)$

Note : separable algorithm in $\mathcal{O}(\log^2 m.N^2)$ in 2D [Coeurjolly 2014]

Distance transform with Squared Euclidean distance

The problem

Let $p = (i, j) \in S \subset \mathbb{Z}^2$. We have :

$$DT(p) = \min_{q \notin S} \{ d_2^2(p, q) \}$$
$$\Leftrightarrow$$
$$DT(i,j) = \min_{q(k,l) \notin S} \{ (k-i)^2 + (l-j)^2 \}$$

イロト イポト イヨト イヨト

14/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Distance transform with Squared Euclidean distance

The problem

Let $p = (i, j) \in S \subset \mathbb{Z}^2$. We have :

$$DT(p) = \min_{q \notin S} \{d_2^2(p, q)\}$$

$$\Leftrightarrow$$

$$DT(i,j) = \min_{q(k,l) \notin S} \{(k-i)^2 + (l-j)^2\}$$

Let's decompose [Saito et al. 94]

We can rewrite :

$$opt_x(i,j) = \min_{q(k,j) \notin S} \{ (k-i)^2 \}$$

and then

$$DT(i,j) = \min_{q(k,l) \notin S} \{ (l-j)^2 + opt_x(i,l) \}$$

イロト イポト イヨト イヨト

14/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Distance transform with Squared Euclidean distance

The problem

Let $p = (i, j) \in S \subset \mathbb{Z}^2$. We have :

$$DT(p) = \min_{q \notin S} \{d_2^2(p, q)\}$$

$$\Leftrightarrow$$

$$DT(i,j) = \min_{q(k,l) \notin S} \{(k-i)^2 + (l-j)^2\}$$

Let's decompose [Saito et al. 94]

We can rewrite :

$$opt_x(i,j) = \min_{q(k,j)\notin S} \{(k-i)^2\}$$

and then

$$DT(i,j) = \min_{q(k,l) \notin S} \{ (l-j)^2 + opt_x(i,l) \}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

14/57

 \Rightarrow paradigm = separable algorithm

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Distance transform with d_2^2 - example

Digital set S in white.

15/ 57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Distance transform with d_2^2 - example

Digital set S in white.

Complexity : $O(N^2)$ for a 2D $N \times N$ domain $\Rightarrow O(N^d)$ for a nD N^n domain. *Note :* works also for any distance deriving from a L_p -norm (in particular d_1 , d_{∞}).

15/57

[Coeurjolly et al. 07] [DGtal Library]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

16/ 57

Plan

Transformations

Distance Transform Medial axis Skeleton

Measurements

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

▲□▶ < ⓓ ▶ < ≣ ▶</p>
17/ 57

э

< ∃→

Seminal definition [Blum 67]

Meeting points of a grassfire initialized on the shape boundary

18/57

- ∢ ⊒ →

Modern definitions

- set of centers of maximal balls
- set of points having at least two closest points on the boundary

Seminal definition [Blum 67]

Meeting points of a grassfire initialized on the shape boundary

(a)

18/57

Modern definitions

- set of centers of maximal balls
- set of points having at least two closest points on the boundary

 \Rightarrow For a shape $F \subset \mathbb{R}^2$, these definitions lead to a 1-dimensionnal topological centered equivalent of F

Seminal definition [Blum 67]

Meeting points of a grassfire initialized on the shape boundary

Modern definitions

set of centers of maximal balls

set of points having at least two closest points on the boundary

 \Rightarrow For a shape $F \subset \mathbb{R}^2$, these definitions lead to a 1-dimensionnal topological centered equivalent of F

For a digital set/object $S \subset \mathbb{Z}^2$

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal

Seminal definition [Blum 67]

Meeting points of a grassfire initialized on the shape boundary

Modern definitions

set of centers of maximal balls

set of points having at least two closest points on the boundary

 \Rightarrow For a shape $F \subset \mathbb{R}^2$, these definitions lead to a 1-dimensionnal topological centered equivalent of F

For a digital set/object $S \subset \mathbb{Z}^2$

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal

Medial axis and Distance Transform

Link

For a digital set S, and $p \in S$, DT(p) = radius of the largest ball centered on p and included in S.

 \Rightarrow Medial Axis of S = local maxima of the DT

[K. Palágyi, http://www.inf.u-szeged.hu/ palagyi/skel/skel.html]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

19/ 57

Path-based distance

Idea : to check whether a point $p \in S$ belongs to the Medial Axis, it is enough to compare with a few neighbours \Rightarrow Use a hash table

Image: A math a math

20/57

- ∢ ⊒ →

Path-based distance

Idea : to check whether a point $p \in S$ belongs to the Medial Axis, it is enough to compare with *a few neighbours* \Rightarrow Use a hash table

Example with the Chamfer distance

20/57

Neighbourhood \mathcal{V} ? : for d_{∞} , $\mathcal{V} = \{(\pm 1, \pm 1), (0, \pm 1), (\pm 1, 0)\}.$

Squared Euclidean distance

Cannot pre-define a (limited) set of neighbours and radii \Rightarrow New tool : power diagram

(a)

21/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Squared Euclidean distance

Cannot pre-define a (limited) set of neighbours and radii \Rightarrow New tool : power diagram

Rewriting S

Lapalissade :
$$S = \bigcup_{p \in S} B(p, DT(p))$$

= $\{(i, j) | \exists p, (i - x_p)^2 + (j - y_p)^2 < DT(p)\}$
= $\{(i, j) | \exists p, \underbrace{DT(p) - (i - x_p)^2 - (j - y_p)^2 > 0}_{\text{paraboloid}}\}$

イロト イヨト イヨト イヨト

21/57
Algorithm depends on the distance...

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

21/57

 \Rightarrow *Highest paraboloïds* are enough to define *S* : others correspond to non-maximal balls

Algorithm depends on the distance...

21/57

 \Rightarrow *Highest paraboloïds* are enough to define *S* : others correspond to non-maximal balls

 \Rightarrow algorithmic tool from computational geometry = *Power Diagram*.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Property

S is exactly defined by the set of centers of the medial axis + radii

22/57

- ∢ ⊒ →

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Property

S is exactly defined by the set of centers of the medial axis + radii

22/57

Question

Is this set of minimum cardinality?

Property

S is exactly defined by the set of centers of the medial axis + radii

Question

Is this set of minimum cardinality?

Answer

No! Maximal balls property only ensures that no ball is included in another, but a ball can be included in the *union* of others. Bad news : the problem is NP-complete [Coeurjolly et al. 08]

(a)

Property

S is exactly defined by the set of centers of the medial axis + radii

Question

Is this set of minimum cardinality?

Answer

No! Maximal balls property only ensures that no ball is included in another, but a ball can be included in the *union* of others. Bad news : the problem is NP-complete [Coeurjolly et al. 08]

22/57

 \Rightarrow simplification algorithms [Ragnemalm et al. 91, Coeurjolly et al. 08]

Objet	$\mathcal{F} = AM(\mathcal{S})$	$\hat{\mathcal{F}}$ Ragnemalm et al.	$\hat{\mathcal{F}}$ Greedy
		ţ.	
	104	56 (-46%) [<0.01s]	66 (-36%) [< 0.01s]
•	1292	795 (-38%) [0.1s]	820 (-36%) [0.19s]
*	*		
	17238	6177 (-64%) [48.53s]	6553 (-62%) [57.79s]

23/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Plan

Transformations

Distance Transform Medial axis Skeleton

Measurements

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

24/57

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

< ∃→

Several definitions

Seminal definition [Blum 67]

Meeting points of a grassfire initialized on the shape boundary

Modern definitions

set of centers of maximal balls

set of points having at least two closest points on the boundary

 \Rightarrow For a shape $F \subset \mathbb{R}^2$, these definitions lead to a 1-dimensionnal topological centered equivalent of F

For a digital set/object $S \subset \mathbb{Z}^2$

Medial Axis : set of centers of maximal balls inside S

Skeleton : digital object, topologically equivalent to S and minimal

Skeleton

Let O be a digital object = digital set + topology (adjacency relations).

Principle

Withdraw some points of O (one by one) without "modifying the topology" :

- homotopy equivalence
- or homeomorphism ?

26/57

Image: A matrix

Homotopy equivalence - Simple points

Simple point

A point $p \in O$ is *simple* iff $O - \{p\}$ is homotopy equivalent to O.

In practice - Constraints

- a connected component of O cannot be deleted
- ▶ a connected component of *O* cannot be disconnected

27/57

- no connected component of O^c can be created
- no connected components of O^c can be merged

[Rosenfeld 70, Ronse 86, ...]

Example of simple points

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Example of simple points

Digital Object *O* is 4-connected.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

28/ 57

Example of simple points

Digital Object *O* is 8-connected.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

28/ 57

From the definition, the characterization is *global* \Rightarrow at least $\mathcal{O}(n)$ to test *one* point in a domain of *n* points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

Neighbourhood of p

\Rightarrow characterization in $\mathcal{O}(1)$!

[2D : Rosenfeld 79] [3D : Morgenthaler 81, Bertrand 94, Saha et al. 94,...] [4D : Kong 97, Couprie & Bertrand 09]

イロト 不得下 イヨト イヨト 二日

29/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

From the definition, the characterization is *global* \Rightarrow at least $\mathcal{O}(n)$ to test *one* point in a domain of *n* points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

1 connected component for O1 for O^c $\Rightarrow p$ is simple

イロト 不得 とくまと くまとう き

29/57

\Rightarrow characterization in $\mathcal{O}(1)$!

[2D : Rosenfeld 79] [3D : Morgenthaler 81, Bertrand 94, Saha et al. 94,...] [4D : Kong 97, Couprie & Bertrand 09]

From the definition, the characterization is *global* \Rightarrow at least $\mathcal{O}(n)$ to test *one* point in a domain of *n* points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

O is 4-connected

2 connected component of *O* 4-connected to *p* 2 connected component of O^c 8-connected to *p* \Rightarrow *p* is not simple

29/57

\Rightarrow characterization in $\mathcal{O}(1)$!

[2D : Rosenfeld 79] [3D : Morgenthaler 81, Bertrand 94, Saha et al. 94,...] [4D : Kong 97, Couprie & Bertrand 09]

From the definition, the characterization is *global* \Rightarrow at least $\mathcal{O}(n)$ to test *one* point in a domain of *n* points.

(Very) Local criterion

Let's count the connected components in the neighbourhood of p.

O is 8-connected

1 connected component of *O* 8-connected to *p* 1 connected component of O^c 4-connected to *p* \Rightarrow *p* is simple

29/57

\Rightarrow characterization in $\mathcal{O}(1)$!

[2D : Rosenfeld 79] [3D : Morgenthaler 81, Bertrand 94, Saha et al. 94,...] [4D : Kong 97, Couprie & Bertrand 09]

Thinning algorithm

Simple sequential removal

While there exist p simple in O

 $\bullet ~ O \leftarrow O \setminus p$

Order matters

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

30/57

Data: Digital Object *O* Result: Digital Object Sk(O) $Sk(O) \leftarrow O$ $Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}$

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

・ロト ・回ト ・ヨト ・ヨト

```
Data: Digital Object O

Result: Digital Object Sk(O)

Sk(O) \leftarrow O

Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}

while SP \neq \emptyset do

Next \leftarrow \emptyset

for all the p \in SP do
```

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

・ロン ・四 ・ ・ ヨン ・ ヨン

31/57

```
Data: Digital Object O

Result: Digital Object Sk(O)

Sk(O) \leftarrow O

Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}

while SP \neq \emptyset do

Next \leftarrow \emptyset

forall the p \in SP do

if p is simple for Sk(O) then

Sk(O) \leftarrow Sk(O) \setminus \{p\}
```

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

・ロン ・四 ・ ・ ヨン ・ ヨン

```
Data: Digital Object O

Result: Digital Object Sk(O)

Sk(O) \leftarrow O

Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}

while SP \neq \emptyset do

Next \leftarrow \emptyset

forall the p \in SP do

if p is simple for Sk(O) then

Sk(O) \leftarrow Sk(O) \setminus \{p\}

forall the q \in Sk(O), q neighbour of p do

Next \leftarrow Next \cup \{q\}

end
```

end

・ロン ・四 ・ ・ ヨン ・ ヨン

```
Data: Digital Object O
Result: Digital Object Sk(O)
Sk(O) \leftarrow O
Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}
while SP \neq \emptyset do
      Next \leftarrow \emptyset
      forall the p \in SP do
           if p is simple for Sk(O) then
                  Sk(O) \leftarrow Sk(O) \setminus \{p\}
            forall the q \in Sk(O), q neighbour of p do
                  Next \leftarrow Next \cup {q}
           end
      end
      SP \leftarrow \emptyset
      forall the p \in Next do
           if p is simple for Sk(O) then
                 SP \leftarrow SP \cup \{p\}
      end
end
```

イロト イポト イヨト イヨト

```
Data: Digital Object O
Result: Digital Object Sk(O)
Sk(O) \leftarrow O
Queue : SP \leftarrow \{p \in O \mid p \text{ is simple for } O\}
while SP \neq \emptyset do
      Next \leftarrow \emptyset
      forall the p \in SP do
           if p is simple for Sk(O) then
                  Sk(O) \leftarrow Sk(O) \setminus \{p\}
            forall the q \in Sk(O), q neighbour of p do
                  Next \leftarrow Next \cup {q}
           end
      end
      SP \leftarrow \emptyset
      forall the p \in Next do
           if p is simple for Sk(O) then
                 SP \leftarrow SP \cup \{p\}
      end
```

end

Note : A priority function can also be used (for instance the Distance Transform).

・ロン ・四 ・ ・ ヨン ・ ヨン

31/57

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Preserving the shape

Homotopy equivalence \Rightarrow any digital object O with a single connected component reduces to a single point !

gipsa-lab

32/57

Preserving the shape

Homotopy equivalence \Rightarrow any digital object O with a single connected component reduces to a single point !

Anchor points

Predicate defining un-removable points, for instance : points with one neighbour, points of the medial axis

```
if p is simple for Sk(O) and not Anchor(p)
then
Sk(O) \leftarrow Sk(O) \setminus \{p\}
```

+ huge literature on the subject (see PhD thesis of [Chaussard 10] for instance)

Cellular grid space framework

In higher dimension, the skeleton does not always have nice properties (remaining 3d parts for instance).

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

33/ 57

< 🗇 🕨

Cellular grid space framework

In higher dimension, the skeleton does not always have nice properties (remaining 3d parts for instance).

33/57

 \Rightarrow Use the cellular grid space : need to define simple cells, etc.

[Image from Chaussard 10] [see also Mazo 11]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Outline

Transformations

Measurements

Multigrid convergence

Area estimation

Tangent, normal, length estimation

Curvature and higher derivatives estimation

< 🗇 🕨

Goal : compute geometric quantities

Consider a family \mathcal{F} of shapes in \mathbb{R}^n (fulfilling given properties).

イロト イポト イヨト イヨト

35/57

Global geometric quantities

For a given shape $S \in \mathcal{F}$, compute :

- its area (volume)
- its perimeter (area of its boundary)

Local geometric quantities

For any point $x \in \partial S$, $S \in \mathcal{F}$, compute :

- its tangent, normal vector
- its curvature

Transformations

Measurements

Multigrid convergence

Area estimation Tangent, normal, length estimation Curvature and higher derivatives estimati

< (⊐) >

36/57

.∃ →

Is the computation accurate, truthful?

Consider :

- ▶ a grid \mathbb{G} of resolution 1/h, h > 0 (size of the pixels).
- A digitization process Dig_h such that Dig_h(S) = S ∩ (hZ²) is the digitized version of S ∈ F

Image: A math a math

Is the computation accurate, truthful?

Consider :

- ▶ a grid \mathbb{G} of resolution 1/h, h > 0 (size of the pixels).
- a digitization process Dig_h such that Dig_h(S) = S ∩ (hZ²) is the digitized version of S ∈ F

37/57

What happens when $h \rightarrow 0$?

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Global geometric estimators - multigrid convergence

Multigrid convergence [Serra82]

Let \mathcal{F} be a family of shapes. The geometric estimator $\hat{\epsilon}$ is said to be multigrid convergent for \mathcal{F} toward the geometric descriptor ϵ iff $\forall S \in \mathcal{F}$

$$egin{aligned} &\lim_{h o 0} |\hat{\epsilon}(\mathrm{Dig}_h(\mathcal{S})) - \epsilon(\mathcal{S})| \leq au_{\mathcal{S}}(h) \ &\lim_{h o 0} au_{\mathcal{S}}(h) = 0 \end{aligned}$$

38/57

The speed of convergence is given by $\tau_S(h)$.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

Local geometric estimators - multigrid convergence

Local multigrid convergence

Let \mathcal{F} be a family of shapes. The geometric estimator $\hat{\epsilon}$ is said to be multigrid convergent for \mathcal{F} toward the geometric descriptor ϵ iff $\forall S \in F, \forall x \in \partial S$,

$$\forall y \in \partial \mathrm{Dig}_h(S)$$
 with $\|y - x\|_1 \leq h$,

$$|\hat{\epsilon}(\mathrm{Dig}_h(S), y) - \epsilon(S, x)| \le \tau_{S, x}(h)$$
$$\lim_{h \to 0} \tau_{S, x}(h) = 0$$

・ロン ・四 ・ ・ ヨン ・ ヨン

39/57

The speed of convergence is given by $\tau_{S,x}(h)$.

[See Coeurjolly et al. 12 for a survey on digital estimators]

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis
Plan

Transformations

Measurements

Multigrid convergence

Area estimation

Tangent, normal, length estimation Curvature and higher derivatives estimation

< 4 → < 3

40/57

.∃ →

First example : area estimation

Consider the *shadow* digitization scheme Dig_h .

For a shape $S \in \mathcal{F}$, let's count the number of points in $\operatorname{Dig}_h(S)$, and define $\hat{\epsilon}(\operatorname{Dig}_h(S)) = h^2 \cdot |S \cap (h\mathbb{Z}^2)|$.

- For the family of convex shapes \mathcal{F} , $au_X(h) = O(h)$ [Gauss,Dirichlet]
- For the family of \mathcal{C}^3 -convex shapes \mathcal{F} , $\tau_X(h) = O(h^{\frac{15}{11}+\epsilon})$ [Huxley 90]

Image: A mathematical states and a mathem

41/57

Speed of convergence

Plan

Transformations

Measurements

Multigrid convergence Area estimation

Tangent, normal, length estimation

Curvature and higher derivatives estimation

< 🗇 🕨 🔸

42/57

.∃ →

Length estimation - first trial

Let C be a digital curve, defined by a sequence of elementary displacements.

Question

Can we define a *convergent length estimator* of C by counting the number of elementary displacements?

Remark

Even if the Hausdorff distance between the digital boundary and the shape boundary ∂S tends towards 0 when $h \rightarrow 0$, "stairs effect" remains.

43/57

Local weights - Stair effect

Let's try for different digitization schemes.

"Shadow" of a shape

Let S be a disk of radius $\frac{1}{2}$, and Dig_h be the "shadow". Let C be $\partial \operatorname{Dig}_h(S)$.

Length of *C* tends to 4 instead of π !

Image: A math a math

44/57

→

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Local weights - Stair effect

Let's try for different digitization schemes.

"Shadow" of a shape

Let S be a disk of radius $\frac{1}{2}$, and Dig_h be the "shadow". Let C be $\partial \operatorname{Dig}_h(S)$.

Length of *C* tends to 4 instead of π !

Digitization of a segment

Doomed local weights

Local weights estimator

• Consider the decomposition of *C* into parts of *m* elementary displacements such that $C = w_1 w_2 \dots w_n \lambda$

・ロン ・四 ・ ・ ヨン ・ ヨン

- Give a weight p(.) to each w_i
- Define the estimator $\hat{\epsilon}(C) = \sum_{i=1}^{n} p(w_i)$

Doomed local weights

Local weights estimator

- Consider the decomposition of *C* into parts of *m* elementary displacements such that $C = w_1 w_2 \dots w_n \lambda$
- Give a weight p(.) to each w_i
- Define the estimator $\hat{\epsilon}(C) = \sum_{i=1}^{n} p(w_i)$

Result when $C = \text{Dig}_h(S)$, S a straight segment

For all m and all p(.), the set of segments for which the estimator converges to the length of S is countable. Meaning that most of the time, the estimator does not converge. [Tajine, Daurat 03].

・ロン ・四 ・ ・ ヨン ・ ヨン

Doomed local weights

Local weights estimator

- Consider the decomposition of *C* into parts of *m* elementary displacements such that $C = w_1 w_2 \dots w_n \lambda$
- Give a weight p(.) to each w_i
- Define the estimator $\hat{\epsilon}(C) = \sum_{i=1}^{n} p(w_i)$

Result when $C = \text{Dig}_h(S)$, S a straight segment

For all m and all p(.), the set of segments for which the estimator converges to the length of S is countable. Meaning that most of the time, the estimator does not converge. [Tajine, Daurat 03].

Another solution?

Decompose C into parts such that the "length" of the parts adapts itself to the curve. \Rightarrow use digital segments

45/57

[see also semi-local estimators in Daurat et al. 11, Mazo & Baudrier 14]

Length estimation through polygonalization

Principle

Compute a polygon from the digital curve C using digital straight segments.

 \Rightarrow length of C = length of the polygon.

Image: A matrix

Length estimation through polygonalization

Principle

Compute a polygon from the digital curve C using digital straight segments.

 \Rightarrow length of C = length of the polygon.

Several approaches

46/57

- greedy as long as possible DSS [Kovalesvsky et al. 92]
- Miminum Length Polygon : shortest curve that separates inside from outside [Sloboda 98, Provençal & Lachaud 09]
- Faithful Polygon : polygon that preserves convex and concave parts [Roussillon & Sivignon 11]

Multigrid convergence (theoretical and/or experimental) in O(h).

Tangent estimation

Let $C = p_i$ be a digital curve in \mathbb{Z}^2 . Goal : estimate the first derivative for all $p \in C$.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

47/57

- ∢ ⊒ →

Tangent estimation

Let $C = p_i$ be a digital curve in \mathbb{Z}^2 . Goal : estimate the first derivative for all $p \in C$.

Maximal Digital Segment

A digital segment S_{ij} is maximal on C if there is no segment $S \subset C$ such that $S_{ij} \subset S$.

(a)

Tangent estimation

Let $C = p_i$ be a digital curve in \mathbb{Z}^2 . Goal : estimate the first derivative for all $p \in C$.

Maximal Digital Segment

A digital segment S_{ij} is maximal on C if there is no segment $S \subset C$ such that $S_{ij} \subset S$.

Algorithmically

- Maximality can be tested locally, checking S_{i-1,j} and S_{i,j+1}
- algorithms to add or remove a point at the front or at the back of a DSS in $\mathcal{O}(1)$ [Debled & Reveilles 95, Lachaud et al. 07]

イロト イポト イヨト イヨト

47/57

 \Rightarrow algorithm in $\mathcal{O}(|\mathcal{C}|)$ to compute all the maximal DSS on \mathcal{C} .

Image: A matrix

48/57

Swiss knife

- convergent tangent estimator
- convergent length estimator
- convex, concave parts, extremal points

Image: A matrix

48/57

Swiss knife

- convergent tangent estimator
- convergent length estimator
- convex, concave parts, extremal points

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Theorem [Lachaud et al. 07]

Let $x \in \partial S$. The direction of any maximal digital segment of $\text{Dig}_h(S)$ that covers x converges to the tangent at x when $h \to 0$.

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

49/57

イロト イポト イヨト イヨト

Theorem [Lachaud et al. 07]

Let $x \in \partial S$. The direction of any maximal digital segment of $\text{Dig}_h(S)$ that covers x converges to the tangent at x when $h \to 0$.

Convergent tangent estimator

- choose any maximal digital segment
- use a convex combination of all the maximal digital segments (λMST) [Lachaud et al. 07]

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem [Lachaud et al. 07]

Let $x \in \partial S$. The direction of any maximal digital segment of $\text{Dig}_h(S)$ that covers x converges to the tangent at x when $h \to 0$.

Convergent tangent estimator

- choose any maximal digital segment
- use a convex combination of all the maximal digital segments (λMST) [Lachaud et al. 07]

Convergent length estimator

• "Digitize" $\int_0^1 t(s) ds : \widehat{Length}(\operatorname{Dig}_h(S)) = \sum_{e \in \partial \operatorname{Dig}_h(S)} \hat{t}(e) \cdot t_{elem}(e)$.

・ロット (日) (日) (日)

49/57

• Convergence speed : $\mathcal{O}(h^{\frac{1}{3}})$ ($\mathcal{O}(h^{\frac{4}{3}})$ experimentally)

[Coeurjolly & Klette 04, Lachaud 06]

Plan

Transformations

Measurements

Multigrid convergence Area estimation Tangent, normal, length estimation Curvature and higher derivatives estimation

< 4 → < 3

50/57

∃ >

Curvature

Let $\gamma(s)$ be a (at least \mathcal{C}^2) curve. The curvature κ along γ is given by :

Definitions

(i) norm of the second derivative $\kappa(s) = |\frac{d^2\gamma}{ds^2}|$

(ii) derivative of the tangent orientation $\kappa(s) = \frac{d\phi}{ds}$

(iii) inverse of the osculating circle radius $\kappa(s) = \frac{1}{r(s)}$

51/57

Families of digital curvature estimators (1/2)

Many algorithms that *mimic* these definitions :

 in (i) (ii) convolutions (local weighted means) are used to mimic derivatives [Worring & Smeulders 93, Feschet & Tougne 99, ...]

(a)

Families of digital curvature estimators (1/2)

Many algorithms that *mimic* these definitions :

- in (i) (ii) convolutions (local weighted means) are used to mimic derivatives [Worring & Smeulders 93, Feschet & Tougne 99, ...]
- in (ii) (iii) digital segments or digital circular arcs are used to compute tangents or osculating circles [Coeurjolly et al. 01, Herman & Klette

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

52/57

07, Roussillon et al. 11,...]

Families of digital curvature estimators (1/2)

Many algorithms that *mimic* these definitions :

- in (i) (ii) convolutions (local weighted means) are used to mimic derivatives [Worring & Smeulders 93, Feschet & Tougne 99, ...]
- in (ii) (iii) digital segments or digital circular arcs are used to compute tangents or osculating circles [Coeurjolly et al. 01, Herman & Klette

52/57

gipsa-lab

Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence difficult to obtain

イロト イポト イヨト イヨト

53/57

Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence difficult to obtain

Other estimators :

- fitting of higher order polynomial [Provot & Gérard 11]
 - multigrid convergent estimation of higher order derivatives in *O*(h¹/_{k+1}) for k-th derivative

53/57

not parameter-free

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

Families of digital curvature estimators (2/2)

Difficulties : not user-parameter free and/or multigrid convergence difficult to obtain

Other estimators [•]

- fitting of higher order polynomial [Provot & Gérard 11]
 - multigrid convergent estimation of higher order derivatives in $\mathcal{O}(h^{\frac{1}{k+1}})$ for k-th derivative
 - not parameter-free

integral invariant estimator [Pottman et al. 07, Coeurjolly et al. 14, Levallois 15]

- multigrid convergent in $\mathcal{O}(h^{\frac{1}{3}})$
- can be parameter-free

For 3D Digital Objects

- ► Normal vector estimation : multigrid convergent in O(h^{1/8}) and stable algorithm [Cuel et al. 14, ...]
- Surface area : as for length estimation, integrate normals
- ▶ Mean and Gaussian curvature : integral invariant estimators are multigrid convergent in $\mathcal{O}(h^{\frac{1}{3}})$ [Coeurjolly et al. 14, Levallois 15]

gipsa-lab

The last words...

A short and incomplete overview

For instance, what about :

▶ more "complex" digital primitives : curves in 3D, circles, etc

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

55/57

affine transformations : how to perform a rotation ?

The last words...

A short and incomplete overview

For instance, what about :

- ▶ more "complex" digital primitives : curves in 3D, circles, etc
- affine transformations : how to perform a rotation ?

Books to go further

- Géométrie discrète et images numériques, 2007. Collective book (in french).
- Digital Geometry, 2004. R. Klette & A. Rosenfeld (in english)

Digital Geometry Tools and Algorithms

 aim at gathering digital geometry algorithms in a common programming framework

< 17 > <

- open-source, collaborative library
- Let's try it during lab session this afternoon !

Thank you!

Isabelle Sivignon, Yan Gérard, Digital geometry: digital objects analysis

gipsa-lab

57/5

A B > 4
 B > 4
 B