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Background: Ronse's Theorems 
                        
In the 1960's Rosenfeld introduced the concepts of   
8-simple and 4-simple 1's in binary images on a  
2D Cartesian grid. 
 
An 8-simple 1 is a non-8-isolated 4-border 1 that can be 
changed to 0 without splitting any 8-connected object,  
and also without merging any 4-connected hole with  
the background or with another such hole.  
 
a, b, ..., j  are some 8-simple 1's  
of a 2D binary image (whose 1's  
are the gray squares). 
 

w, x, y, z are some  
non-8-simple 1's.               
 
4-simple 1's are analogous, but with the roles of 
"4-" and "8-" interchanged. 
 
An important application of these concepts  
is to the problem of establishing that proposed  
thinning algorithms "preserve topology". 
 
[Thinning algorithms are used to reduce  
objects in binary images down to thin "skeletons".] 
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The concepts of 8-deletable and 4-deletable sets   
generalize the concepts of 8-simple and 4-simple 1's 
to finite sets of zero or more 1's. [e.g., {B,C,D,E} is 8-deletable]  

 

 

An 8-deletable set can be defined  
as a (finite) set D  of 1's such that,  
when the elements of D are changed  
to 0's, none of the following occurs: 
   • an 8-connected object is split      [e.g., {E,F} is not 8-deletable] 
  • a 4-connected hole is merged with the background or 
        merged with another such hole  [{ A,B,D} is not 8-deletable] 
  • an 8-connected object vanishes  [{ G,H, I, J } is not 8-deletable] 
  • a new 4-connected hole is created  [{ B, C} is not 8-deletable] 
 

4-deletable sets are analogous––just switch "4" and "8". 
 

[Note: Ronse called these sets strongly 8-(4-)deletable.] 
 
 
 

In the mid-1980's, Ronse proved the next two theorems,  
which provide the basis for a powerful method of  
establishing that a proposed parallel thinning algorithm   
is "8-topology-preserving" or "4-topology preserving". 
 
[Here "8-(4-)topology-preserving" means: For every 
possible input image I, the set of 1's of I that are changed  
to 0 by the algorithm is an 8-(4-)deletable set of  I.] 
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A minimal non-8-(4-)deletable set of a binary image I  
is a set D of 1's of I such that: 
  1. Each proper subset of D is an 8-(4-)deletable set of I.  

  2. D  is not an 8-(4-)deletable set of 1's of I.  
 

Example: The minimal non-8-deletable sets  
in the image on the right (     = 1,      = 0) are 

{ A}, { F}, { B, C}, { B, G}, { C, D}, { D, H}, { E, I}, { J, K},  
{ L, O, P},  { M, N, Q, R},  { S, T} 
 
 

We say that a given set D of pixels can be  
minimal non-8-(4-)deletable  if there exists an image I  
such that D is a minimal non-8-(4-)deletable set of I. 
 
 

We say that a given set D of pixels can be  
minimal non-8-(4-)deletable  as a proper subset  
of a component  if there exists an image I such that  D is a minimal non-8-(4-)deletable set of I, and D is a 
proper subset of an 8-(4-)component of the 1's of I. 
 
 

Theorem 1 (Ronse, 1988)   A set D of pixels can be  
minimal non-8-deletable if and only if one of the 
following is true: 
       (1) D is a singleton set or a pair of 4-neighbors. 
       (2) D  is isometric to        ,       , or        . D  can be minimal non-8-deletable as a proper subset  
of a component if and only if D satisfies (1). 
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We say that a given set D of pixels can be minimal non-8-(4-)deletable   
if there exists an image I such that D is a minimal non-8-(4-)deletable  
set of I. 
 
We say that a given set D of pixels can be minimal non-8-(4-)deletable  
as a proper subset of a component  if there exists an image I such that  D is a minimal non-8-(4-)deletable set of I, and D is a proper subset of an 
8-(4-)component of the 1's of I. 
 
Theorem 1 (Ronse, 1988)  A set D of pixels can be minimal non-8-deletable 
 if and only if one of the following is true: 
  (1) D is a singleton set or a pair of 4-neighbors.  

         (2) D  is isometric to 
 

 , 
 

,  or 
 

 . D  can be minimal non-8-deletable as a proper subset of a component  
if and only if D satisfies (1). 
 

Recall: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For minimal non-4-deletable sets, the analogous  
result is: 
 
 

Theorem 2 (Ronse, 1988)   A set D of pixels  
can be minimal non-4-deletable if and only if D is a singleton set or a pair of 8-neighbors.   
In both cases, D  can be minimal non-4-deletable  
as a proper subset of a component. 
 
[Reference:  C. Ronse, Minimal test patterns for connectivity preservation  
                      in parallel thinning algorithms for binary digital images,  
                     Discrete Applied Mathematics 21, 1988, 67–79.] 



 
 
 
 

6

  
 
 
 
 
 
 
 
 
 

Therefore, to establish that a parallel thinning algorithm  
T "preserves 8-topology", it suffices to show that: 
 
 

  The set of 1's which are changed to 0 at a single subiteration of  T  
  never includes the following: 

   ·   a singleton or pair of 4-neighbors that is a non-8-deletable set
*
 

 

   ·   an 8-component of the 1's that is isometric to       ,       , or         

 
Similarly, to establish that a parallel thinning algorithm  
T "preserves 4-topology", it suffices to show that: 
 
 

 The set of 1's which are changed to 0 at a single subiteration of  T  
 never includes the following: 

   ·   a singleton or pair of 8-neighbors that is a non-4-deletable set
*
 

 
 
 
 
 

                                   *
of the image at the start of that subiteration

Theorem 1 (Ronse, 1988)  A set D of pixels can be minimal non-8-deletable 
 if and only if one of the following is true: 
  (1) D is a singleton set or a pair of 4-neighbors. 

         (2) D  is isometric to 
 

 , 
 

,  or 
 

 . D  can be minimal non-8-deletable as a proper subset of a component  
if and only if D satisfies (1) . 
 
 

Theorem 2 (Ronse, 1988)  A set D of pixels can be minimal non-4-deletable 
if and only if  D is a singleton set or a pair of  8-neighbors.  In both cases, D  can be minimal non-4-deletable as a proper subset of a component. 
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Since the 1980's, analogs of Ronse's two theorems  
have been obtained for binary images on other grids: 
   · 2D hexagonal grid   (Hall) 
      [Topology and Its Applications 46, 1992, 199–217.] 
   · 3D Cartesian grid  (Ma) 
      [CVGIP: Image Understanding 59, 1994, 328–39.]     · 3D face-centered cubic grid (Gau & Kong) 
      [International Journal of Pattern Recognition and Artificial  
       Intelligence 13, 1999, 485–502.]       · 4D Cartesian grid  (Gau & Kong) 
      80-connectedness (on 1's): [Graphical Models 65, 2003, 112–30.] 
      8-connectedness: [in: R. Klette, J. Žunić (eds.), Proc. IWCIA 2004, 318–33.] 
 

 

However, each grid has been dealt with separately,  
using arguments many of whose details are specific  
to that grid. 
 
Our main results unify and extend this earlier work: 
We generalize the two theorems of Ronse to a very  
large class of grids of dimension ≤ 4  (a class that  
includes all of the above-mentioned grids). 
 
 

The key idea is to base our arguments on a simple  
fact about intersections and unions of contractible 
polyhedra in 3-space. 
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Background: Contractible Polyhedra in ℝ3 

A polyhedron is a set that is expressible as the   
union of a finite collection of simplexes (which  
may contain  simplexes of different dimensionalities).     
 
A polyhedron P  is said to be contractible  if   P  can be  

"continuously deformed over itself" down to one point. 
 

Examples: 1. any convex polytope.  2. a nonconvex example:        
                   3. a set consisting of a single point. 
 

A polyhedron P in ℝ3 is contractible  if and only if   

 ·  P is nonempty, connected, and simply connected, and  ·  (ℝ3 \ P)  is connected.   

 

Informally : A polyhedron P≠ in ℝ3
 is contractible iff  

P is connected, has no internal cavities, and has no holes. 
 
 
 

Here is a computationally convenient characterization:  

A polyhedron P in ℝ3 is contractible  iff  

 ·  P is connected, and 

 ·  (ℝ3 \ P)  is connected, and 

 ·  χ(P) =  1.      [χ(P) denotes the Euler characteristic of P.] 
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Unions and Intersections of Contractible Polyhedra 
 
Our work is based on the following topological fact: 
 

Key Fact:   Let P1 and P2 be polyhedra in ℝ3.   Then  

any two of the following imply the third: 
 

 1. Each of P1 and P2 is contractible. 
  

 2. P1 ∪ P2 is contractible. 
  

 3. P1 ∩ P2 is contractible. 
 

[This follows from the "P and (ℝ3\P) are connected, and χ(P) = 1" 

characterization of contractible polyhedra P in ℝ3
, and results of 

algebraic topology (e.g., the reduced Mayer-Vietoris sequence).] 
 
Although 1 ∧ 3  2    and   2 ∧ 3  1   are true  

even without the hypothesis that P1 and P2 are in ℝ3 ,  

1 ∧ 2  3 would be false without that hypothesis. 
                
 
 

This is one of  the (two) places where our arguments  
 

depend on the assumption that our binary images  
 

are defined on complexes of dimension ≤ 4. 
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Background: Boundary Faces and Schlegel Diagrams 
 

Notation: If Q is any nD convex polytope, then   

 

                 bdryfaces(Q) ≝ the set of all the  
                                            lower-dimensional faces of Q. 
 

                 faces(Q) ≝  {Q}  ∪  bdryfaces(Q) 
  

Example: If  Q is a cube, then faces(Q) has 27 elements  
                 and bdryfaces(Q) has 26 elements––because  
                 Q has 8 vertices, 12 edges, and 6 2D faces. 
                  
A Schlegel diagram  represents  bdryfaces(Q),   

 

in a topologically faithful way, as a  

collection of cells whose union is  ℝn−1
 ∪ {∞}. 

 

Example 
                                                                   A (2D) Schlegel diagram       
A cube Q                                                    of  bdryfaces(Q) –– note  
                                                                   that the "outside region"           
                                                                   represents the "bottom"            
                                                                   2D face of  bdryfaces(Q).            

 
 
 

If Q is a 4D hypercube, then a  
Schlegel diagram of bdryfaces(Q)  
is 3-dimensional and looks like this: 
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nD Xel Complexes; m-Xels 
 

Our main results are proved for binary images on  
the grid cells of 2D, 3D, and 4D xel complexes. 
 
 

For simplicity, we will only define convex  
xel complexes in this talk.  
 
An nD convex xel complex K  is a set of convex  
polytopes that satisfies the following conditions: 
 

 1. ⋃K  = ℝn  and K is locally finite. 

 2. If  Q ∈ K  then  faces(Q)  ⊆  K . 
 

 3. If P, Q ∈ K and P ∩ Q ≠ , then 
           P ∩ Q  ∈ faces(P) ∩ faces(Q). 
 

 4. If P, Q ∈ K  and P ∩ Q = , then there exist P', Q' ∈ K   
           such that  P ∈ faces(P'),  Q ∈ faces(Q'), 
           dim(P') = dim(Q') = n, and P' ∩ Q' = . 
 
 
 

                         Condition 4 excludes complexes   
                         that include configurations such 
                         as the one on the left.  Here n = 2. 
 
Each element P of K is called a xel (of the complex K ). 
If P ∈ K  and dim(P) = m, then P is called an m-xel (of K ). 
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Notation: If K is an nD xel complex, then we write        G(K ) to denote the set of all n-xels of  K . 
 

Each element of G(K ) is called a grid-cell of K . 
 

A convex xel complex K  is uniquely determined by G(K )! 
 

Examples of  2D Convex Xel Complexes 
 

A 2D cubical xel complex  is a  
xel complex K for which G (K ) is  
a set of squares that tessellate the  
plane in the "obvious" way. 
 

Binary images on the grid cells of this xel complex are 
just binary images on the familiar "2D Cartesian grid". 

 

If in our main results we take K  to be a 2D cubical xel 
complex, we obtain Ronse's two theorems.  
 
 

A 2D hexagonal xel complex  is a xel  
complex K for which G (K ) is a set of  
hexagons that tessellate the plane like this:  
 
 

A 2D Khalimsky xel complex  is a xel  
complex K for which G (K ) is a set of  
octagons and squares that tessellate the 
plane as shown on the right. 
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Examples of 3D Convex Xel Complexes 
 

A 3D cubical xel complex  is a  
xel complex K for which G (K ) is     
a set of cubes that tessellate  
3-space in the obvious way: 
 

 

A 3D face-centered cubical xel complex    
is a xel complex K for which G (K ) is a set of  
rhombic dodecahedra that tessellate 3-space as the 
Voronoi neighborhoods of a face-centered cubic lattice.   
 
 
 
 
 
 

    
 
 
 
 

A 3D body-centered cubical xel complex  is a  
xel complex K for which G (K ) is a set of  
truncated octahedra that tessellate 3-space as the 
Voronoi neighborhoods of a body-centered cubic lattice.   
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Weak and Strong Components 
 
We now generalize the familiar concepts of  
"8-" and "4-"adjacency, connectedness, and  
components to the grid-cells of any xel complex. 
 
If P and Q are grid-cells of an nD xel complex,  
we say P is weakly adjacent to Q if P ≠  Q and P ∩ Q ≠ ∅; 
we say P is strongly adjacent to Q if P ∩ Q is an (n–1)-xel. 
 
Weakly adjacent  grid-cells share at least a vertex. 

Strongly adjacent  grid-cells share an (n–1)D face. 
 
 

A set T  of grid-cells of a xel complex is said to be  
weakly (strongly) connected if, for all P, Q ∈ T , there  
exist T0, T1,  ...,  Tm ∈ T  such that T0 = P, Tm = Q, and 
Ti is weakly (strongly) adjacent to  Ti+1  for 0 ≤ i < m. 
 
 

If S  ≠ ∅ is a set of grid-cells of a xel complex, then  
each maximal weakly (strongly) connected subset of S  
is called a weak (strong) component of S. 
 
 
 
 

    Next, we will generalize the concept of an  
    8-deletable set to binary images on arbitrary  
    xel complexes ... 
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Binary Images; Deletable Sets of 1's 
 
 

A binary image on a xel complex K  is a mapping   I : G(K ) {0,  1}   for which either I–1[{0}] or I–1[{1}]  

is a finite set.            [We may omit "binary", for brevity!] 
 
If  P ∈ G(K )  and I(P) = 1, then we say P is a  1  of  I.    
If  P ∈ G(K )  and I(P) = 0, then we say P is a  0  of  I. 
 
 

Observation:   I–1[{1}]  =  the set of all the 1's of  I.      
Let D ⊆ I–1[{1}].   Then we say D is a  deletable  set 
of  I  if  D  is finite and the polyhedron  ⋃I–1[{1}]  
can be continuously deformed* over itself onto the  
polyhedron  ⋃( I–1[{1}]  \  D) . 
 

   
*  

in such a way that all points in ⋃(I–1[{1}]  \  D ) remain fixed  
     throughout the deformation process. 
 
 

In topology, such a continuous deformation process  
is called a deformation retraction.  Hence: 
 
 

Definition   A set D  ⊆ I–1[{1}] is a deletable set of  I  
if  D is  finite and there is a deformation retraction of  ⋃I–1[{1}] onto ⋃(I–1[{1}]  \  D).  
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Example of an image I (on a 2D cubical xel complex)  
and a deletable set D  of 1's of  I:  
         =  a  1  of  I  in D 

             =  a  1  of  I  in I–1[{1}]  \  D 
            =  a  0  of  I  
              
 
 
                                                                 D is a  
                    deletable set 
                                                                 of 1's of I 
 
 
 
 
 
 
                                                                A deformation        
                                                                retraction of 
                                                                ⋃ I–1[{1}]  onto 
                                                                ⋃ ( I–1[{1}]   \  D) 
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Notation: If D  is a set of 1's of an image I, then   

          I – D  ≝ the image obtained from I by               
                                  changing all the 1's in D  to 0's. 
 
 

     If A  is a set of 0's of an image I, then   

          I + A  ≝ the image obtained from I by               
                                  changing all the 0's in A  to 1's. 
 
 
 

Two Properties of Deletable Sets  
 
 

Changing all the 1's in a deletable set to 0's    

   ·  preserves weak components of the 1's  
   ·  preserves strong components of the 0's 
 
 

More precisely, if  D  is any deletable set of 1's of an  
image I, then:  ·  Each weak component of the 1's of  I  contains  
       just one weak component of the 1's of I – D. 
 ·  Each strong component of the 0's of  I  – D contains  
    just one strong component of the 0's of  I. 
 
Note: On a 2D cubical xel complex, the 
   weak-(strong-)components are the 8-(4-)components,       
   so the above-mentioned properties imply that  
   the deletable sets are exactly the 8-deletable sets. 
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Codeletable Sets of 1's 
 
The concept of a codeletable set generalizes the  
concept of a 4-deletable set  to arbitrary xel complexes. 
 
Notation: If  I  : G(K ) {0,1}   is an image, then 
                 the image Ic : G(K ) {0,1} is defined      
          by Ic(P) = 1 – I(P)  for all P ∈ G(K ). 
 

Note: The 1's and 0's of Ic are respectively the 0's and 1's of I. 
 
 
 

Definition   A set S  of 1's of an image I is called a 
codeletable set of  I if S  is a deletable set of  (I – S)c. 
 

Note: The 1's of the image (I – S)c  are just the 0's of I and  
          the elements of the set S ;  equivalently,  (I – S)c – S = Ic. 

 
 

If  S  is any codeletable set of 1's of an image  I, then changing the elements of S  to 0's  
"preserves strong components of  the 1's  
 and weak components of the 0's": 
  ·  Each strong component of the 1's of  I  contains  
   just one strong component of the 1's of I – S. 
 

 ·  Each weak component of the 0's of  I  – S contains  
       just one weak component of the 0's of  I. 
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Minimal Non-Deletable Sets and  
Minimal Non-Codeletable Sets of 1's 
 
 
 

A minimal non-deletable set of an image I is a  
set D of 1's of I such that: 
     1. Every proper subset of D is a deletable set of I.  

     2. D  is a non-deletable set of I.  

 
 

A minimal non-codeletable set of an image I is a  
set D of 1's of I such that: 
     1. Every proper subset of D is a codeletable set of I.  

     2. D  is a non-codeletable set of I.  

 
 

 
If K  is a xel complex, then we say that a given set D of 
grid-cells of K  can be minimal non-(co)deletable on K  
if there exists an image I : G(K ) {0,1}  such that D is  
a minimal non-(co)deletable set of I. 
 
 

We say that a given set D of grid-cells of K   can be  
minimal non-(co)deletable on K  as a proper subset of 
a component  if there exists an image I : G(K ) {0,1}   
such that D is a minimal non-(co)deletable set of I, and  D is a proper subset of a weak (strong) component of  
the 1's of I. 
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Our Main Results: 
 

Theorem  Let K  be an nD xel complex (where n ≤ 4)  
and let   ≠ D  ⊆ G(K ).  Then: 

 

 A1. D   can be minimal non-deletable on K   iff  ⋂ D  ≠ . 
 

 A2. D   can be minimal non-deletable on K  as a  
         proper subset of a component  iff   dim(⋂ D )  ≥ 1. 
 

 B1. D   can be minimal non-codeletable on K   
        iff   ⋂ D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂ D ' = ⋂ D).   
  

 B2. D   can be minimal non-codeletable on K   
        as a proper subset of a component   
        iff  |D | ≤ n, ⋂ D  ≠ , and    ∄D '  (D ' ⊊ D  ∧  ⋂ D ' = ⋂ D). 
 
 

Note:     A2  A1     B2  B1 
 
 
 

Trivial Examples:  
 
 

(a) If D  is a singleton, then D satisfies A2 and B2. 
             [For A2, this is because ⋂D = D.] 
                 
(b) If  there exist  P, Q ∈ D  such that P and Q are 
      not weakly adjacent, then D satisfies none of the 
      four conditions.  
                                       [In this case ⋂D = .] 
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More Examples 
 

(c) If n ≥ 2 and D  is a pair of strongly adjacent  
      grid-cells {P, Q},  then D satisfies A2 and B2.   
 
 

      [For A2, this is because ⋂D = P ∩ Q is an (n–1)-xel; 
      for B2, note that in this case  
                   ≠D' ⊊ D     D' ={P}  or { Q}    ⋂D' ≠ ⋂D.] 
 
 

(d) If K is a 2D cubical xel complex, and D =      ,  
      then D  satisfies A1 but not A2,  
      and D satisfies B2.   
(e) If K is a 2D cubical xel complex, and D =       or       , 
      then D  satisfies A1 but not A2,  
      and D does not satisfy the B conditions. 

Theorem  Let K  be an nD xel complex (where n ≤ 4)  
and let   ≠ D  ⊆ G(K ).  Then: 
 

 A1. D  can be minimal non-deletable on K   iff  ⋂D  ≠ . 
 

 A2. D  can be minimal non-deletable on K  as a  
         proper subset of a component  iff   dim(⋂D )  ≥ 1. 
 

 B1. D  can be minimal non-codeletable on K   
        iff   ⋂D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D).   
  

 B2. D  can be minimal non-codeletable on K  as a 
        proper subset of a component   
        iff  |D | ≤ n, ⋂D  ≠ , and   ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D). 



 
 
 
 

22

Theorem  Let K  be an nD xel complex (where n ≤ 4)  
and let   ≠ D  ⊆ G(K ).  Then: 
 

 A1. D  can be minimal non-deletable on K   iff  ⋂D  ≠ . 
 

 A2. D  can be minimal non-deletable on K  as a  
         proper subset of a component  iff   dim(⋂D )  ≥ 1. 
 

 B1. D  can be minimal non-codeletable on K   
        iff   ⋂D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D).   
  

 B2. D  can be minimal non-codeletable on K  as a 
        proper subset of a component   
        iff  |D | ≤ n, ⋂D  ≠ , and  ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D). 

         
 
 
 
 
 
 
 
 
 
 
 
Further Examples 
 

(f)  If K is a 3D cubical xel complex, and D  =        
      then D satisfies A1 but not A2, 
      and D satisfies B2. 
 
 

(g) If K is a 3D cubical xel complex, and D  =        
      then D satisfies A1 but not A2, 
      and D  does not satisfy the B conditions. 
 
 

(h) If K is a 2D hexagonal xel complex, and D  =        
      then D satisfies A1 and B1,  
      but D does not satisfy A2 or B2. 
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Theorem Let K  be an nD xel complex (where n ≤ 4) and let    ≠ D  ⊆ G(K ).  Then: 
  A1. D  can be minimal non-deletable on K   iff  ⋂D  ≠ . 
 A2. D  can be minimal non-deletable on K  as a  
         proper subset of a component  iff   dim(⋂D )  ≥ 1. 
 B1. D  can be minimal non-codeletable on K   
         iff   ⋂D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D).  
 B2. D  can be minimal non-codeletable on K  as a 
         proper subset of a component   
         iff  |D | ≤ n, ⋂D  ≠ , and  ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lemma: The condition of  B1 implies |D | ≤ n +1. 
 

Proof:  Let k = |D | – 1, let  D  = {P0, P1, ..., Pk}, and 
suppose the condition of B1 holds.   We must show k ≤ n. 

 

No two members of the descending chain 
   P0 ⊇ P0∩P1 ⊇ P0∩P1∩P2  ⊇  ... ⊇ P0∩P1∩ ... ∩Pk  =  ⋂D ≠  
can be equal –– for if  P0∩ ... ∩Pi = P0∩ ... ∩Pi∩Pi+1  then              ⋂D = (P0∩     ...  ∩Pi+1) ∩ (Pi+2∩ ... ∩Pk) 
                = (P0∩  ...  ∩Pi)  ∩  (Pi+2∩ ... ∩Pk) 
                = ⋂(D\{ Pi+1}), contrary to the condition of B1. 
 

So, since each intersection P0∩  ...  ∩Pi is a xel, we have  
dim(P0∩  ...  ∩Pi+1) ≤ dim(P0∩  ...  ∩Pi) – 1 for all i < k 
whence  dim(⋂D) = dim(P0∩ ... ∩Pk)  ≤ dim(P0) – k = n – k. 
Therefore  n – k ≥ dim(⋂D) ≥ 0.   // 
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Theorem Let K  be an nD xel complex (where n ≤ 4) and let    ≠ D  ⊆ G(K ).  Then: 
  A1. D  can be minimal non-deletable on K   iff  ⋂D  ≠ . 
 A2. D  can be minimal non-deletable on K  as a  
         proper subset of a component  iff   dim(⋂D )  ≥ 1. 
 B1. D  can be minimal non-codeletable on K   
         iff   ⋂D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D).  
 B2. D  can be minimal non-codeletable on K  as a 
         proper subset of a component   
         iff  |D | ≤ n, ⋂D  ≠ , and  ∄D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D). 

 
 
 
 
 
 
 
 
 
 

When K  is a 3D cubical xel complex: D  satisfies A1  iff    ≠ D  ⊆  a 2×2×2 block of 8 voxels. D  satisfies A2  iff    ≠ D  ⊆  a 2×2×1 block of 4 voxels. D  satisfies B2  iff  D  is a singleton, or 
                               D  is a pair of 26-neighbors, or    
                               D  isometric to          .  
 
 

Note: On a cubical xel complex (2D, 3D, or 4D),  
          any set D  that satisfies B1 also satisfies B2. 
 D satisfies B1 but not B2 iff  
    |D | = n+1 (where n = dim(K )) and, for 1 ≤ k ≤ n,  
    the ⋂ of any k+1 members of D  is an (n – k)-xel.   
 

In an nD cubical xel complex with n ≥ 2, no such sets  
exist because P0∩P1,  P0∩P2, and P1∩P2 cannot all be  
(n–1)-xels if the P's are distinct grid-cells.  
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           P is a simple 1 of I                            
There is a deformation retraction of 
 ⋃ I–1[{1}] onto ⋃(I–1[{1}]  \ { P}). 

Simple 1's and Cosimple 1's in Binary Images 
 

The concept of a simple 1 generalizes the concept of  
an 8-simple 1 to images on arbitrary xel complexes: 
 
Let P be a 1 of an image I.    
We say P is a simple 1 of I if the singleton  
set {P} is a deletable set of I. 
 
 
 
 

Observation:  
 
 
 
 
 
 

The concept of a cosimple 1 generalizes the concept  
of a 4-simple 1 to images on arbitrary xel complexes: 
 
 

We say P is a cosimple 1 of an image I  
if P is a simple 1 of  the image (I – { P}) c

. 
 

Hence P is a cosimple 1 of an image I  iff 
the singleton set {P} is a codeletable set of I. 
 
Remark:  In an image on a 3D cubical xel complex,  
the concepts of simple and cosimple 1's are equivalent  
to the standard concepts of 26-simple and 6-simple 1's.  
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           P is a simple 1 of I                            
There is a deformation retraction of 
 ⋃ I–1[{1}] onto ⋃(I–1[{1}]  \ { P}). 

2D Illustrations of:  
 
         
 
 
 
 
 
 
 
 
 
 
 
 

                                              
                            
 
a, b, ..., j  are some                        Deformation retractions of  

simple 1's of an image I      ⋃I–1[{1}] onto ⋃(I \{ P}),  
(whose 1's are the gray         for P ∈ { a, b, ..., j}. 
squares); w, x, y, z are  
some non-simple 1's of I. 
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Simple Sets and Cosimple Sets of 1's 
 

A set P  of 1's of an image I is said to be a simple set   
of  I  if  the elements of P  can be arranged in a  
sequence Q1, Q2, ..., Qk in which Q1 is a simple 1 of I  
and each   Qi  (i > 1) is a simple 1 of  I – {Q1, Q2, ..., Qi–1}. 
 
Here is an equivalent recursive definition: 
 

Definition    Simple sets of  1's in an image I are  
defined recursively, as follows: 
 

   ≃  ∅ is a simple set of  I. 

 ≃  If D  is a set of 1's of I, and there is some Q ∈ D  
      for which 
           1.  D  \

 { Q} is a simple set of  I, and 
           2.  Q is a simple 1 of   I – (D  \

 { Q}) 
   then  D  is a simple set of  I. 

 
Cosimple sets of 1's are defined analogously––just  
replace "simple" with "cosimple" in the above. 
 D  is a (co)simple set of I    D  is a (co)deletable set of I 
 
 

Moreover, in any image I on a 2D xel complex,   D  is a (co)simple set of I    D is a (co)deletable set of I 
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    D  is a minimal non-(co)deletable set of I                                                                         D  is a minimal non-(co)simple set of I 
 

Minimal Non-Deletable ≡ Minimal Non-Simple 
 

A minimal non-(co)simple set of an image I is a  
set D of 1's of I such that:   1.  Each proper subset of D is a (co)simple set of I.    2.  D  is a non-(co)simple set of 1's of I.  

 
Even though a (co)deletable set need not be a  
(co)simple set, we can show that: 
 

 
 
                                                                                   (★) 
 
 
 
 

 
For X = simple, cosimple, deletable, or codeletable, 
we say that a set D  of 1's of I  is  hereditarily X  if  
every subset of D has the property X:    D  is hereditarily X    ∀D' ⊆D   D' has the property X    
      
Evidently, a set D is minimal non-X if and only if 
      • D  is not hereditarily X, but 
      •  every proper subset of D  is hereditarily X 
 

Hence (★) can be proved by showing: 
   hereditarily (co)simple    hereditarily (co)deletable 
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Since        "is a simple set"   "is a deletable set" 
we have that     
    "is hereditarily simple"    "is hereditarily deletable" 
 

To prove the reverse implication 
    "is hereditarily deletable"   "is hereditarily simple"      
it is enough to prove 
    "is hereditarily deletable"   "is simple"          () 
 

() is a consequence of: 
 

Lemma: Let D  be a set of 1's of an image I and let 
Q ∈ D. Then any two of the following imply the third: 
      1.  D \{ Q}  is a (co)deletable set of I. 
      2.  Q  is a (co)simple 1 of I – (D \{ Q}). 
      3.  D  is a (co)deletable set of I. 
 

To deduce (), let the set D be a minimal counterexample  
to () in an image I.  Then D is hereditarily deletable in I, 
but D is not simple in I.   Let Q be any element of D.  
As D is hereditarily deletable, both D and its subset  D \{ Q} are deletable in I.   So, by the above lemma, 

               Q  is a simple 1 of I – (D \{ Q})        (⊻) 
As D is a minimal counterexample to (), and D \{ Q} is  
deletable, () implies D \{ Q}  is a simple set of I; this and  
(⊻) imply D is simple in I, which is a contradiction.// 
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The equivalence 
    hereditarily codeletable  hereditarily cosimple       
can be proved in a similar way, using the same lemma. 
 
 

Lemma: Let D  be a set of 1's of an image I and let Q ∈ D.  
Then any two of the following imply the third: 
      1.  D \{ Q}  is a (co)deletable set of I. 
      2.  Q  is a (co)simple 1 of I – (D \{ Q}). 
      3.  D  is a (co)deletable set of I. 
 
This fundamental lemma is a consequence of the  
following fact about polyhedra: 
 

Fact: If X, Y, and Z are polyhedra such that Z ⊆ Y ⊆ X,  
then any two of the following imply the third: 
 

        ·  Y is a deformation retract of X.     
        ·  Z is a deformation retract of Y.     
        ·  Z is a deformation retract of X. 
 
 
 

Note: On a 3D cubical xel complex, hereditarily simple  
and cosimple sets are cases of Bertrand's P-simple sets. 
               [G. Bertrand, C. R. Acad. Sci. Paris, Série I  321, 1995, 1077–84] 
 

If P  is a set of 1's of a binary image I on a 3D cubical 
xel complex, then:   P  is hereditarily simple in I  iff  P  is P26-simple in I.   P  is hereditarily cosimple in I  iff  P  is P6-simple in I.  
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The Attachment Set of a 1 in a Binary Image I  
 

Let Q be a 1 of  an image I : G(K )   {0, 1}.   
 

We define two sets of boundary faces of Q: 
 

Attach(Q, I)  ≝ 
     ⋃{ bdryfaces(Q) ∩ bdryfaces(X) | X ∈ I–1[{1}] \ { Q}} 
 

Coattach(Q, I)  ≝  
     ⋃{ bdryfaces(Q) ∩ bdryfaces(X) | X ∈ I–1[{0}] } 
 
The sets ⋃Attach(Q, I) and ⋃Coattach(Q, I) will 
respectively be called the attachment set of Q in I and 
the coattachment set of Q in I. 
 
If  ⋃ I–1[{1}] is obtained by "gluing" Q onto ⋃( I–1[{1}] \ { Q}), then the attachment set  ⋃Attach(Q, I)  is the set of points at which  
glue may (usefully) be applied!                         
  
                           

                               This diagram shows the  
                               attachment set of each light gray 1 
                               in the image (on a 2D cubical           
                               xel complex) whose 1's are the  
                               light gray and dark gray 2-xels.        
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If  I is the image (on a 
3D cubical xel complex) 
whose 1's are shown below, 
and Q is this 1                         
                                           
                                                   . . .   then ⋃Attach(Q, I) 
                                                   is this set: 
 
 

                                                    
 
 
And ⋃Attach(Q, I) can be  
represented by a 2D Schlegel  
diagram as follows: 
 
 
If X is any 1 of an image I, then it is straightforward  
to verify that: 
   ·    Attach(X, I) =                no other 1 of I is weakly adjacent to X 
   ·    ⋃Attach(X, I)      =  X  ∩  ⋃( I–1[{1}] \ { X})  
   ·    ⋃Coattach(X, I)  =  X  ∩  ⋃( I–1[{0}])  
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A Local (and Essentially Discrete)  
Characterization of Simple 1's and Cosimple 1's  
 

Theorem 1   If Q is a 1 of an image I on an  
nD xel complex, where n ≤ 4, then: 

(a) Q is a simple 1 iff  ⋃Attach(Q, I) is contractible. 

(b) Q is a cosimple 1 iff  ⋃Coattach(Q, I) is contractible. 
 
 
 
 

In the 4D case, ⋃Attach(Q, I) and ⋃Coattach(Q, I)  
can be visualized   as subsets of  ℝ3

 ∪ {∞}     in a 

Schlegel diagram of bdryfaces(Q)! 
 
 

 
Theorem 1 follows from results of algebraic topology. 
 

[The "if" parts are true even without the hypothesis 
 that n ≤ 4, but the "only if" parts are not!] 
 

                                                     Q 
3D Example: Let I be                                          ⋃Attach(Q,I)     
the image, on a 3D cubical                                                
xel complex, whose 1's are  
shown here.    (All hidden  
voxels are 0's of I.) 
 

Then the attachment set ⋃Attach(Q, I) is not contractible,  
(because it is not simply connected –– it "has a hole"). 
So, by the above theorem, Q is a non-simple 1 of I. 
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Characterizations of Minimal Non-Simple (MNS) 
and Minimal Non-Cosimple (MNCS) Sets 
 
 
 

The following theorem states useful necessary  
and sufficient conditions for a set of 1's to be  
an MNS or MNCS set: 
 
 

Theorem 2   In any image I on a xel complex:  
 

  1. D is an MNS set of  I  if and only if   D  is finite  
      but nonempty and, for every Q ∈ D :  
       MNS1: Q  is a non-simple 1 of  I –  (D  \{ Q}). 
       MNS2: Q is a simple 1 of  I –  D '  
                        whenever D ' ⊊ D  \{ Q}.  
 

  2. D is an MNCS set of I if and only if  D  is finite  
      but nonempty and, for every Q ∈ D :  
       MNCS1: Q  is a non-cosimple 1 of  I –  (D  \{ Q}). 
       MNCS2: Q is a cosimple 1 of  I –  D '  
                         whenever D ' ⊊ D  \{ Q}.  
 
 

Theorem 2 follows from an earlier lemma: 
   Lemma: Let D  be a set of 1's of an image I and let Q ∈ D.  Then  
   any two of the following imply the third: 
         1.  D \{ Q}  is a (co)deletable set of I. 
         2.  Q  is a (co)simple 1 of I – (D \{ Q}). 
         3.  D  is a (co)deletable set of I. 
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Combining Theorems 1 and 2, we obtain: 
 

Theorem  Let D  be a set of 1's of an image I on an  
nD xel complex, where n ≤ 4.   Then:  
 

 1. D is an MNS set of  I  if and only if   D  is finite  
     but nonempty and, for every Q ∈ D :  
      (a) ⋃Attach(Q,  I – (D  \{ Q})) is not contractible. 
      (b) ⋃Attach(Q,  I – D' ) is contractible 
                    whenever D' ⊊ D  \{ Q}. 
  

 2. D is an MNCS set of  I if and only if  D  is finite  
     but nonempty and, for every Q ∈ D :  
      (a) ⋃Coattach(Q, I – (D  \{ Q})) is not contractible. 
      (b) ⋃Coattach(Q,  I – D' ) is contractible 
                    whenever D' ⊊ D  \{ Q}.  

Recall:  Thm. 1  If Q is a 1 of an image I on an nD xel complex,  
              where n ≤ 4, then:  
    (a) Q is a simple 1 iff  ⋃Attach(Q, I) is contractible. 
    (b) Q is a cosimple 1 iff  ⋃Coattach(Q, I) is contractible. 
 

      Thm. 2  In any image I on a xel complex:  
    1. D is an MNS set of  I  if and only if  D  is finite but nonempty  
                      and, for every Q ∈ D :  
                    MNS1: Q  is a non-simple 1 of  I – (D  \{ Q}). 
                    MNS2: Q is a simple 1 of  I–D '  whenever D ' ⊊ D  \{ Q}.  

    2. D is an MNCS set of  I if and only if  D  is finite but nonempty  
                      and, for every Q ∈ D :  
                    MNCS1: Q  is a non-cosimple 1 of  I – (D  \{ Q}). 
                   MNCS2: Q is a cosimple 1 of  I – D ' whenever D ' ⊊ D \{ Q}.  
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1i

QX ri

QX

1i

QT ri

QT

Recall:   
 1. D is an MNS set of  I  iff   D  is finite but nonempty and, for every Q ∈ D :  
       (a) ⋃Attach(Q, I – (D  \{ Q})) is not contractible. 
       (b) ⋃Attach(Q, I – D' ) is contractible whenever D' ⊊ D  \ {Q}.  
 

 
 
 
 
 
Let  I  be an image on an nD xel complex, where n ≤ 4. 
Let D    be a nonempty finite set of 1's of  I, and  
let k = |D | – 1. 
 

For each Q ∈ D , define AQ,  
i

QT , and i
QX  as follows: 

    Let AQ denote the set  ⋃Attach(Q, I – (D  \{ Q})). 

    Let ( i
QT   | 1 ≤ i ≤ k)  be an enumeration of D  \{ Q}.   

    Let i
QX  = Q ∩ i

QT      (for 1 ≤ i ≤ k). 
 
 

Then, for any subset { i1, ..., ir}  of  {1, ..., k},  

 

    AQ  ∪         ∪ ... ∪       =  ⋃Attach(Q, I – D' )  

 

     where  D'  = (D \{ Q}) \ {      , ... ,       }. 
 
From the above, we deduce: 
 D  is an MNS set of  I  if and only if, for all Q ∈ D :      (1)  AQ

  is not contractible, but    (2)  AQ ∪ 1i
QX ∪ ... ∪ ri

QX is contractible  

         for all nonempty subsets {i1, ..., ir} of {1, ..., k}. 
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Recall:  Let D  be a nonempty finite set of 1's of  I. 
              Let k = |D | – 1 and, for each Q ∈ D ,  
           let   AQ  denote the set ⋃Attach(Q, I – (D  \{ Q})), 

           let   ( i
QT   | 1 ≤ i ≤ k)  be an enumeration of D  \{ Q}, and  

              let    i
QX  = Q ∩ i

QT    (for 1 ≤ i ≤ k). 

                Then D  is an MNS set of  I  if and only if, for all Q ∈ D: 
 

               (1)  AQ
  is not contractible, but 

               (2)  AQ ∪ 1i
QX ∪ ... ∪ ri

QX is contractible  

                         for all nonempty subsets {i1, ..., ir} of {1, ..., k}. 

 

 
 
 
 
 
 
 
                
 
 
 
           
 
 
Similarly, if  CQ  denotes the set ⋃Coattach(Q, I), then:      D  is an MNCS set of  I  if and only if, for all Q ∈ D :        (1')  CQ ∪ 1

QX ∪ ... ∪ k
QX  is not contractible, but 

      (2')  CQ ∪ 1i

QX ∪ ... ∪ ri

QX  is contractible  

                 for all proper subsets {i1, ..., ir} of  {1, ..., k}. 
 

Note:  CQ ∪ 1i
QX ∪ ... ∪ ri

QX  =  ⋃Coattach(Q, I – { 1i
QT ,  ..., ri

QT })  

             CQ ∪ 1
QX ∪ ... ∪ k

QX     =  ⋃Coattach(Q, I – (D  \{ Q}))      
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Recall:    Let D  be a nonempty finite set of 1's of  I, and let k = |D | – 1. 

                For each Q∈D,  let ( i
QT  | 1≤ i ≤ k) be an enumeration of D  \{ Q}, 

                let i
QX  = Q ∩ i

QT  (for 1 ≤ i ≤ k), let CQ = ⋃Coattach(Q, I), and 

                let  AQ = ⋃Attach(Q, I – (D  \{ Q})).  Then: 
 

                    A. D  is an MNS set of  I  if and only if,  for all Q ∈ D, 
                           (1)  AQ

  is not contractible, but 

                           (2)  AQ ∪ 1i
QX ∪ ... ∪ ri

QX   is contractible  

                                       for  each  nonempty  subset { i1, ..., ir} of {1, ..., k}.  
                       B. D  is an MNCS set of  I  if and only if,  for all Q ∈ D, 

                           (1')  CQ ∪ 1
QX ∪ ... ∪ k

QX    is not contractible, but 

                           (2')  CQ ∪ 1i
QX ∪ ... ∪ ri

QX    is contractible  

                                        for  each  proper  subset { i1, ..., ir} of {1, ..., k}. 
 
 

                Key Fact:   Let P1 and P2 be polyhedra in 3-space.    Then 
                                    any two of the following imply the third: 
                        ·  Each of P1 and P2 is contractible. 
                        ·  P1 ∪ P2 is contractible. 
                        ·  P1 ∩ P2 is contractible. 

 

      
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
An inductive argument based on the Key Fact yields: 

 

Lemma 1: For any  finite collection S  of polyhedra in 
3-space, the following are equivalent:   
   (a)  ⋂T  is contractible whenever  ≠ T ⊆ S. 
   (b)  ⋃T  is contractible whenever  ≠ T ⊆ S. 
 

This lemma and the facts A and B above are the   
principal ingredients of our proof of the main results.
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Recall: For each Q ∈ D :      AQ  denotes the set ⋃Attach(Q, I – (D  \{ Q})). 

                                  (iQT   | 1 ≤ i ≤ k)  is an enumeration of D  \{ Q}.   
                                              iQX  = Q ∩ i

QT    (for 1 ≤ i ≤ k). 

            A. D  is an MNS set of  I  if and only if, for all Q ∈ D : 
                   (1)  AQ

  is not contractible, but 

                   (2)  AQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                                for all nonempty subsets {i1, ..., ir} of {1, ..., k}. 
 

            Lemma 1: For any  finite collection S  of polyhedra in 3-space, the    
             following are equivalent:   
                    (a)  ⋂T  is contractible whenever  ≠ T ⊆ S. 
                    (b)  ⋃T  is contractible whenever  ≠ T ⊆ S.  
 
 
 
 
 
 
 
 
 
 
 
We now prove a series of 5 Claims which, together, 
constitute the "only if" parts of the main results. 
 

Claim 1:     ⋂D =    D   cannot be MNS                     
 

Proof:  Suppose ⋂D =  and D  is MNS in an image I.  
Pick any Q ∈ D.  Then, with the above notation,   

       1
QX ∩ ... ∩ k

QX   = Q ∩ 1
QT ∩ ... ∩ k

QT    =  ⋂D   =  
Let S  = {AQ∪ 1

QX ,  ...,  AQ∪ k
QX }.  

Then ⋂S    =  AQ ∪ ( 1
QX ∩ ... ∩ k

QX ) = AQ. 
 

By (2):  ⋃T  is contractible whenever  ≠ T  ⊆ S. 
By (1):  ⋂S  = AQ  is not contractible. 
 

This contradiction of Lemma 1 proves Claim 1. //
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Recall: For each Q ∈ D :      AQ  denotes the set ⋃Attach(Q, I – (D  \{ Q})). 

                                  (iQT   | 1 ≤ i ≤ k)  is an enumeration of D  \{ Q}.   
                                              iQX  = Q ∩ i

QT    (for 1 ≤ i ≤ k). 

            A. D  is an MNS set of  I  if and only if, for all Q ∈ D : 
                   (1)  AQ

  is not contractible, but 

                   (2)  AQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                                for all nonempty subsets {i1, ..., ir} of {1, ..., k}. 
 

            Lemma 1: For any finite collection S  of polyhedra in 3-space, the  
             following are equivalent:   
                    (a)  ⋂T  is contractible whenever  ≠ T ⊆ S. 
                    (b)  ⋃T  is contractible whenever  ≠ T ⊆ S.  

 
 
 
 
 
 
 
 
 

 
 
 
 
Claim 2:  (D    is an MNS set of  I  ∧  ⋂D  is a  0-xel)  
                        D is a weak component of the 1's of  I.      
 

Proof: Suppose ⋂D  is a 0-xel {v},  and D  is an MNS set  
of an image I but D  is not a weak component of I–1[{1}]. 
Pick Q ∈ D  such that AQ ≠ .   Then:   
       1

QX ∩ ... ∩ k
QX   = Q ∩ 1

QT ∩ ... ∩ k
QT    =  ⋂D   = {v} 

Let S ={ AQ∪ 1
QX , ..., AQ∪ k

QX }, so ⋂S = AQ ∪ ( 1
QX ∩...∩ k

QX ). 

Then ⋂S  = AQ∪{ v} ; and this set is not contractible  since: 
    ·  If v ∉ AQ, then AQ∪{v}  is disconnected, as AQ≠. 
    ·  If v ∈ AQ, then AQ∪{v}=AQ  is not contractible, by (1). 
But, by (2),  ⋃T  is contractible whenever  ≠ T  ⊆ S. 
This contradiction of Lemma 1 proves Claim 2. // 
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Lemma 1: For any finite collection S  of polyhedra in 3-space, the 
following are equivalent:   
            (a)  ⋂T  is contractible whenever  ≠ T ⊆ S. 
            (b)  ⋃T  is contractible whenever  ≠ T ⊆ S.  
 

Recall:  

 
 
 
 
 

From this lemma we can derive the following similar 
results, which deal with collections S  all of whose 
nonempty proper subcollections have contractible 
unions or contractible intersections: 
 
Cor. 1: For any finite collection S of polyhedra in  
3-space, the following are equivalent:   
   (a) ⋃T  is contractible whenever  ≠ T  ⊊ S.  
   (b) ⋂T  is contractible whenever  ≠ T  ⊊ S. 
 
 

Cor. 2: For any finite collection S  of polyhedra in  
3-space, the following are equivalent:   
   (a) ⋃T  is contractible whenever  ≠ T  ⊊ S,  
            and ⋂S  is contractible. 
   (b) ⋂T  is contractible whenever  ≠ T  ⊊ S,  
            and ⋃S  is contractible. 
 
 
 

Cor. 1 is obtained by applying Lemma 1 to each  
nonempty proper subcollection T  of S.  Cor. 2 is a  
straightforward consequence of Lemma 1 and Cor. 1. 
 
 



 

 
 

42

Recall: For each Q ∈ D :   CQ  denotes the set ⋃Coattach(Q, I). 
                               (iQT   | 1 ≤ i ≤ k)  is an enumeration of D  \{ Q}.   
                                           iQX  = Q ∩ i

QT    (for 1 ≤ i ≤ k). 
              B. D  is an MNCS set of  I  if and only if, for all Q ∈ D :                   (1')  CQ ∪ 1

QX ∪ ... ∪ k
QX  is not contractible, but     

                  (2')  CQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                            for all proper subsets {i1, ..., ir} of {1, ..., k}. 
 

              Cor. 2:  For any finite collection S of polyhedra in 3-space, the  
               following are equivalent:   
                (a) ⋃T  is contractible whenever  ≠ T ⊊ S, and ⋂S  is contractible. 
                (b) ⋂T  is contractible whenever  ≠ T ⊊ S, and ⋃S  is contractible. 
 

          
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Claim 3:   ⋂D =   D   cannot be MNCS    

 

Proof: Suppose ⋂D = and D  is MNCS in an image I.  
Pick any Q ∈ D.  Then, with the above notation,   
       1

QX ∩ ... ∩ k
QX   = Q ∩ 1

QT ∩ ... ∩ k
QT    =  ⋂D   =     

Let S ={ CQ∪ 1
QX , ..., CQ∪ k

QX }, so ⋂S  = CQ∪( 1
QX ∩...∩ k

QX )=CQ.   
 

By (2'):  ⋃T  is contractible whenever  ≠ T  ⊊ S,  and                ⋂S = CQ is contractible.   
 

By (1'):  ⋃S = CQ∪ 1
QX  ∪ ... ∪ k

QX  is not contractible. 
 

This contradiction of Cor. 2 proves Claim 3.  // 
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Recall: For each Q ∈ D :  CQ  denotes the set ⋃Coattach(Q, I). 
                              (iQT   | 1 ≤ i ≤ k)  is an enumeration of D  \{ Q}.   
                                          iQX  = Q ∩ i

QT    (for 1 ≤ i ≤ k). 
              B. D  is an MNCS set of  I  if and only if, for all Q ∈ D :                     (1')  CQ ∪ 1

QX ∪ ... ∪ k
QX  is not contractible, but    

                    (2')  CQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                              for all proper subsets {i1, ..., ir} of {1, ..., k}. 
 

              Cor. 1: For any finite collection S  of polyhedra in 3-space, the  
              following are equivalent:   
                  (a) ⋃T  is contractible whenever  ≠ T ⊊ S. 
                  (b) ⋂T  is contractible whenever  ≠ T ⊊ S. 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claim 4:  ∃D '  (D ' ⊊ D  ∧  ⋂ D ' = ⋂ D)                                         D   cannot be MNCS    

 

Proof (part 1): Suppose D ' satisfies D ' ⊊ D  ∧  ⋂ D ' = ⋂ D  
and D  is MNCS in an image I.  Pick any Q ∈ D '.   
 

WLOG D ' = {Q, 2
QT , ..., k

QT }.  Then, since ⋂ D ' = ⋂ D, 
1
QX ∩ ... ∩ k

QX  = Q∩ 1
QT ∩ ... ∩ k

QT  = Q∩ 2
QT ∩ ... ∩ k

QT  = 2
QX ∩ ... ∩ k

QX  
 

Let S ={ CQ∪ 1
QX , ..., CQ∪ k

QX },  S '  ={CQ∪ 2
QX , ..., CQ∪ k

QX }. 
 

Now S ' ⊊S ; by (2', 1'), ⋃S ' is contractible but ⋃S  is not. 
 

By (2'):  ⋃T  is contractible whenever  ≠ T  ⊊ S .    
So, by Cor. 1, ⋂T  is contractible whenever  ≠ T  ⊊ S . (*)   
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Recall:  B. D  is an MNCS set of  I  if and only if, for all Q ∈ D :                      (1')  CQ ∪ 1
QX ∪ ... ∪ k

QX  is not contractible, but   

                     (2')  CQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                                for all proper subsets {i1, ..., ir} of {1, ..., k}. 
 
Claim 4:  ∃D '  (D ' ⊊ D  ∧  ⋂D' = ⋂D)    D   cannot be MNCS    
 

Proof (part 1): Suppose  ∃D '  (D ' ⊊ D  ∧  ⋂D ' = ⋂D) and D  is MNCS  
in an image I.  Pick any Q ∈ D '.  WLOG D ' = {Q, 2

QT , ..., k
QT }.  Then          

      1
QX ∩ ... ∩ k

QX  = Q∩ 1
QT ∩ ... ∩ k

QT  = Q∩ 2
QT ∩ ... ∩ k

QT  = 2
QX ∩ ... ∩ k

QX . 

Let S ={ CQ ∪ 1
QX , ..., CQ ∪ k

QX },  S ' ={CQ ∪ 2
QX , ..., CQ ∪ k

QX }. 

Now S ' ⊊ S ; by (2', 1'),  ⋃S'  is contractible but ⋃S  is not. 
By (2'):  ⋃T  is contractible whenever  ≠ T  ⊊ S.    
So, by Cor. 1, ⋂T  is contractible whenever  ≠ T  ⊊ S. (*)    

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Proof of Claim 4 (part 2):  We have just shown 

          ⋂T     is  contractible whenever  ≠ T  ⊊ S         (*) 
In particular,  ⋂S '  is contractible.   

 

But ⋂S   =  CQ∪( 1
QX ∩...∩ k

QX ) = CQ∪( 2
QX ∩...∩ k

QX ) = ⋂S '. 
Hence ⋂S  is contractible, and so, by (*),            ⋂T  is contractible whenever  ≠ T  ⊆ S . 
 

Lemma 1 now tells us              ⋃T  is contractible whenever  ≠ T  ⊆ S . 
In particular, ⋃S   is contractible. 

 

This contradiction of (1') proves Claim 4. //  
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Recall: For each Q ∈ D :   CQ  denotes the set ⋃Coattach(Q, I). 
                               (iQT   | 1 ≤ i ≤ k)  is an enumeration of D  \{ Q}.   
                                           iQX  = Q ∩ i

QT    (for 1 ≤ i ≤ k).               B. D  is an MNCS set of  I  if and only if, for all Q ∈ D :                      (1')  CQ ∪ 1
QX ∪ ... ∪ k

QX  is not contractible, but     

                     (2')  CQ ∪ 1i
QX ∪ ... ∪ ri

QX  is contractible  

                                for all proper subsets {i1, ..., ir} of {1, ..., k}. 
 

 
 
 
 
 
 
 
 
 
 
 

Claim  5: If D   is an MNCS set of an image I on an  
nD xel complex (n ≤ 4), and |D | = n+1 , then D  is a  
strong component of the 1's of  I. 

 

Proof: Suppose D is an MNCS set of 1's in some  
image I on an nD xel complex, and |D | = n+1.  
Then, by Claim 3,      ⋂D ≠   
and, by Claim 4,        ∄D'  (D' ⊊ D  ∧  ⋂ D' = ⋂ D). 
 

Pick any Q∈D, and define i
QT  and 

i
QX  (1 ≤ i  ≤ k = n) as before. 

 

As we noted earlier, the condition ∄D ' (D ' ⊊ D  ∧ ⋂D ' = ⋂D) 
implies that no two of the n+1 members of the chain 
     Q ⊇ Q∩ 1

QT  ⊇ Q∩ 1
QT ∩ 2

QT    ⊇  ... ⊇ Q∩ 1
QT ∩ ... ∩ n

QT  =  ⋂D  
are equal, so each member of this chain after the first 
has strictly lower dimensionality than its predecessor.    
 

Hence   ⋂D  is a 0-xel  (since dim(Q) = n and ⋂D ≠ ).  
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Proof of Claim 5 (continued): Let S ={ CQ, 1
QX , ..., k

QX },  

and let S '  = { 1
QX , ..., k

QX }.   Then ⋂S ' = ⋂D ≠ , so that ⋂T  is a xel (and is contractible) whenever ≠T ⊆S '. 
Hence, by Lemma 1,            ⋃T  is contractible whenever ≠T ⊆S '.            (⊻) 
By (1', ⊻, 2'),  ⋃S is not contractible, but             ⋃T  is contractible whenever ≠T ⊊S .             (*) 
So, by Cor. 2, ⋂S = CQ∩⋂D  is not contractible, whence 
           ⋂S =                                                              (♦) 
as the 0-xel ⋂D has no nonempty non-contractible subset. 
Moreover, by (*) and Cor. 1,  
           ⋂T  is contractible whenever ≠T ⊊S                                         (♣) 
As |S | = n+1, it follows from (♦), (♣), and a result of 
topology known as the Nerve Theorem that  ⋃S  is 
homotopy equivalent to an (n–1)-dimensional sphere. 
 

However,  ⋃S  is the union of a subset of  bdryfaces(Q),  
and the only such union that is homotopy equivalent to  
an (n–1)-dimensional sphere is ⋃bdryfaces(Q) itself. 
 

Hence ⋃S  = ⋃bdryfaces(Q) and, since ⋃S  = ⋃Coattach(Q, I – (D \{ Q})), we see that 
Q is not strongly adjacent to any 1 of  I – (D \{ Q}). 
 

As Q is an arbitrary element of D, it follows that D is a strong component of the 1's of I. //
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Concluding Remarks 1 
 

The concepts of minimal non-simple (MNS) and  
minimal non-cosimple (MNCS) set provide the  
basis for a powerful method of establishing that  
a proposed parallel thinning algorithm  
"preserves topology". 
 

For binary images on the grid-cells of a complex K ,  
the method depends on knowing the answers to the 
following questions:   
   For algorithms that are expected to preserve 
   weak components of 1's and strong components of 0's: 
        • Which sets of grid-cells can be MNS on K? 

        • Which sets of grid-cells can be MNS on K as a  
          proper subset of a weak component of the 1's? 
 

 
   For algorithms that are expected to preserve 
   strong components of 1's and weak components of 0's: 
        • Which sets of grid-cells can be MNCS on K? 

        • Which sets of grid-cells can be MNCS on K as a  
          proper subset of a strong component of the 1's? 
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Concluding Remarks 2 
 
The above questions have been answered in the  
literature for the following 5 xel complexes: 
      2D, 3D, and 4D cubical xel complexes 
      2D hexagonal xel complex 
      3D face-centered cubical xel complex  
 

 

Our main results unify and generalize this  
earlier work, by answering the questions for  
all xel complexes of dimension ≤ 4, as follows: 
 
Theorem  Let K  be an nD xel complex (where n ≤ 4)  
and let D be a nonempty set of grid-cells of K .  Then: 

 

 A1. D   can be MNS on K   iff  ⋂ D  ≠ . 
 

 A2. D   can be MNS on K  as a proper subset of a  
        weak component  iff   dim(⋂ D )  ≥ 1. 
 

 B1. D   can be MNCS on K   
        iff   ⋂ D  ≠   and   ∄D '  (D ' ⊊ D  ∧  ⋂ D ' = ⋂ D) .   
                  [Note: This condition implies |D | ≤ n +1.] 
  

 B2. D   can be MNCS on K  as a proper subset of a          
        strong component   
        iff  |D | ≤ n, ⋂ D  ≠  and   ∄D '  (D ' ⊊ D  ∧  ⋂ D ' = ⋂ D). 
 


