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Background: Ronse's Theorems

In the 1960's Rosenfeld introduced the concepts of
8-smple and 4simple 1's in binary images on a
2D Cartesian grid.

An 8-simple 1 is aon-8-isolated 4-border 1 that can be
changed to Qvithout splitting any 8-connected object
and alsavithout merging any 4-connected hole with
the background or with another such hole

: _ J Z i
a,b,...,] are some 8-simple 1's v 5 x
of a 2Dbinaryimage (whose 1's 3 .
are the gray squares). 7
w, X, Y, Zare some a d
non8-simple 1's. b c w

4-simple 1's are analogous, but with the roles of
"4-" and "8-" interchanged.

An important application of these concepts=;
IS to the problem of establishing that propose_ﬂ---
thinning algorithms "preserve topology". .;' ';.

[Thinning algorithms are used to reduce e

objects in binary images down to thin ' skeletons"]



Theconcepts oB-deletable and4-deletable sets
generalize the concepts of 8-simple and 4-simgle 1’
to finite sets of zero or more 1/sg, {B,C,D,E} is 8-deletablé

\

An 8-deletable set can be defined

as a (finite) sep of 1's such that, 48C
when the elements @bare changed

to 0's,none of the following occurs: CIH}[

« an 8-connected object is splitje.g, {E,F} is not 8-deletablé
 a 4-connected hole is merged with the background o

merged with another such hgle B} is not 8-deletablé
« an 8-connected object vanishgs,H,1,J} is not 8-deletablé

« a new 4-connected hole is createslc} is not 8-deletablé

4-deletable sets are analogous—just switch "4" and "8".

[Note: Ronse called these sestsongly8-(4-)deletable]

In the mid-1980's, Ronse proved the next two theste
which provide the basis for a powerful method of
establishing that a proposed parallel thinning @adlgom

IS "8-topology-preserving" or "4-topology presenyin

[Here "8-(4-)topology-preserving" meartor every
possiblanputimagel, thesetof 1'sof I thatare changed
to O by the algorithm is aB-(4-)deletable sedf I.]



A minimal non-8-(4-)deletable set of a binary image
IS a setD of 1's of] such that:

1. Each proper subset ©fis an 8-(4-)deletable set bf
2.D isnot an 8-(4-)deletable set of 1'slof

Example: The minimal non-8-deletable sets A
in the image on theright( =11 =0)are BCDEF
{A}L {F}.{B,C}{B,G}, {C,D}, {D,H}, {E I}, {3k}, & HIJK
{L.O,P}, {M,N,Q,R}, {ST} L MN

oP OR S
We say that a given sétof pixelscan be d

minimal non-8-(4-)deletable if there exists an imagle
such that is a minimal non-8-(4-)deletable setlof

We say that a given sétof pixelscan be

minimal non-8-(4-)deletable as a proper subset
of a component if there exists an imadesuch that
D is a minimal non-8-(4-)deletable setlpfandDis a

propersubset of an 8-(4-)component of the 1'S.of

Theorem 1(Ronse, 1988)A setD of pixels can be
minimal non8-deletablaf and only if one of the
following is true
(1) Dis a singleton sedbr a pair of4-neighbors
(2) D is isometricto", ,"  or
0 can be minimal noﬁ-deletable as a proper subset
of a component and only if D satisfieq1).




Recall:

We say that a given sétof pixelscan be minimal hon-8-(4-)deletable
if there exists an imagesuch thatp is a minimal non-8-(4-)deletable
set ofl.

We say that a given sétof pixelscan be minimal non-8-(4-)deletable
as a proper subset of a component if there exists an imagdesuch that

D is a minimal non-8-(4-)deletable setlpland?is aproper subset of an
8-(4-)component of the 1's bf

Theorem 1(Ronse, 1988)A setD of pixels can be minimal ndideletable
if and only if one of the following is true

(1) Dis a singleton sedr a pair of4-neighbors

[] |
(2) D is isometrictc ||, |, or

0 can be minimal noﬁ-deletable as a proper subset of a component
if and only if D satisfieq1).

For minimal non4-deletablesets, the analogous
result is:

Theorem 2(Ronse, 1988)A setD of pixels

can be minimal nod-deletablef and only if
DS a singleton satr a pair of8-neighbors

In both casesp can be minimal nod-deletable
as a proper subset of a component

[Reference C. Ronse, Minimal test patterns for connectivity presston
in parallel thinning algorithms fonary digital images,
Discrete Applied Mathematds 1988, 67—79.]
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Theorem 1(Ronse, 1988)A setD of pixels can be minimal ndhideletable
if and only if one of the following is true

(1) Dis a singleton sedr a pair of4-neighbors

[] |
(2) D is isometrictc ||, |, or

0 can be minimal noﬁ-deletable as a proper subset of a component
if and only if 9 satisfieq1) .

Theorem 2(Ronse, 1988)A setD of pixels can be minimal nohdeletable
if and only if Dis a singleton setr a pair of 8-neighbors In both cases
© can be minimal nod-deletable as a proper subset of a component

Therefore, to establish that a parallel thinningpathm
T "preserves 8-topology", it suffices to show that:

The set ot's which are changed tbat a single subiteration oT
never includes the following

*
e a singletonor pair of4-neighborsthat is a nor8-deletable set

e ang8-component of th#'sthat is isometric tQD ,‘ or

Similarly, to establish that a parallel thinning@ilithm
T "preserves 4-topology", it suffices to show that:

The set ol's which are changed ®at a single subiteration o
never includes the following

*

e a singletonor pair of 8-neighborsthat is a nomM-deletable set

*
of the image at the start of that subiteration




Since the 1980's, analogs of Ronse's two theorems
have been obtained for binary images on other grids

« 2D hexagonal grid (Hall)
[Topology and Its Applicatiors, 1992, 199-217.]

e 3D Cartesian grid (Ma)
[CVGIP: Image Understanding9, 1994, 328-39.]

« 3D face-centered cubic grid (Gau & Kong)

[International Journal of Pattern Recognition and Artificial
Intelligencel3, 1999, 485-502.]

e 4D Cartesian grid (Gau & Kong)

80-connectedness (on 1'§Gr@phical Models5, 2003, 112-30.]
8-connectedness: [R:Klette,J.Zuni¢ (eds.)Proc.IWCIA2004 318-33.]

However, each grid has been dealt with separately,
using arguments many of whose details are specific
to that grid.

Our main results unify and extend this earlier work
We generalize the two theorems of Ronse to a very
large class of grids of dimensied (a class that

Includes all of the above-mentioned grids).

The key idea is to base our arguments on a simple
fact about intersections and unions of contractible
polyhedra in 3-space.



A polyhedron is a set that is expressible as t
union of afinite collection of simplexes (whic
may contain simplexes of different dimensionalities).

Background: Contractible Polyhedra in R® :E

A polyhedronP is said to beontractible if P can be
"continuously deformed over itself* down to onerndoi

Examples 1. any convex polytope. 2. a nonconvex exampl
3. a set consisting of a singhat.

A polyhedronP in R® is contractibleif and only if
e Pisnonemptyconnectedandsimply connectedand

e (R®\ P) is connected

Informally : A polyhedronP£% in R*is contractibleiff
Pis connectedhasnointernal cavities andhasnoholes

Here is acomputationallyconvenient characterization:
A polyhedronP in R® is contractibleiff
e Pisconnectedand

« (R®\ P) is connectedand
e ¥(P)=1. [x(P)denotes th&uler characteristic of P.]



Unions and Intersections of Contractible Polyhedra

Our work is based on the following topological fact

Key Fact: LetP; andP, be polyhedra ilR>. Then
any two of the following imply the third

1. Each of R andP,is contractible.
2.P1U P> is contractible.

3.P1N P> is contractible.

[This follows from the'P and(R*P) are connectedandy(P) = 1"

characterization of contractible polyhedtan ]R3, and results of
algebraic topology (e.g., the reduced Mayer-Vistegquence).]

Although 1IA3=2 and 22 3= 1 are true

even without the hypothesis tHatandP, are inR>,
1 A 2= 3 would be false without that hypothesis.

This is one of the (two) places where our argusent
depend on the assumption that our binary images
are defined on complexes of dimensio4.



Background: Boundary Faces and Schlegel Diagrams

Notation: If Qis anynD convex polytope, then

bdryfaceqQ) £ the set of all the
lowarreensional faces of Q

facegQ) = {Q} U bdryfaceQ)

Example: If QisacubethenfacegQ) has27elements
andbdryfaceqQ) has26 elements—because
Q has 8 vertices, 12 edges, and 6 2D faces.

A Schlegel diagram representddryfaceqQ),

In a topologically faithful way, as a
collection of cells whose union R™U{}.

Example
. ¢ " A (2D) Schlegel diagram
A cubeQ " 3 . of bdryfaceqQ) — note
ST 1 that the "outside region”
T represents the "bottom"

O Light source ) . 2D face obdryfaceqQ).

If Qis a 4D hypercube, then a
Schlegel diagram didryfaceqQ)
is 3-dimendonal and lookdike this

1C




nD Xel Complexes;m-Xels

Our main results are proved for binary images on
the grid cells of 2D, 3D, and 4ik®el complexes

For simplicity, we will only defineeonvex
xel complexes in this talk.

An nD convex xel complex K is a set of convex
polytopes that satisfies the following conditions:

1.lUK =R" andK is locally finite.
2. If Qe K then facegQ) < K.

3. IfP,Qe K andPNQ+#J, then
PN Q € facegP) N facegQ).

4. 1fP,Qe K andPNQ=¢, then there exif?', Q'e K
such thatP € facegP'), Q € facegQ’),
dimP')=dim(Q")=n, andP'NQ' = &.

Condition&kcludes complexes
that include configuratsosuch
as the one on the leferéh = 2.

W \

Each elemen® of K is called aé (of the complexX).
If PeK and dimP)=m, thenP is called amm-xel (of K).

11



Notation: If K is annD xel complex, then we write
G(K) to denote thaet of alln-xels of K.

Each element ofi(K) is called agrid-cell of K.

A convex xel compleX is uniquely determined hy(K)!

Examples of 2D Convex Xel Complexes

A 2D cubical xel complex is a

xel complexK for which G(K) is
a set ofsquareghat tessellate the
plane in the "obvious" way.

Binary images on the grid cells of this xel complaz
just binary images on the familiar "2D Cartesianl'gr

If in our main results we take to be a 2D cubical xel
complex, we obtain Ronse's two theorems.

A 2D hexagonal xel complex is a xel
complexK for which G(K) is a set of
hexagonghat tessellate the plane like this:

A 2D Khalimsky xel complex is a xel
complexK for which G(K) is a set of
octagonsandsquareshat tessellate the
plane as shown on the right.




Examples of 3D Convex Xel Complexes

A 3D cubical xel complex is a
xel complexK for which G(K) is
a set ofcubesthat tessellate
3-space in the obvious way:

A 3D face-centered cubical xel complex
IS a xel compleX for which G(K) is a set of

rhombic dodecahedrthat tessellate 3-space as the
Voronoi neighborhoods of a face-centered cubicckatt

)z T T

A 3D body-centered cubical xel complex is a

xel complexK for which G(K) is a set of

truncated octahedr¢hat tessellate 3-space as the
Voronoineighborhoodsf abody-centeredubiclattice.

1@ 6
—7 7

8
e@\//
o 3

[ ]
(0,0,0) B




Weak and Strong Components

We now generalize the familiar concepts of
"8-" and "4-"adjacency, connectedness, and
components to the grid-cells of any xel complex.

If P andQ are grid-cells of anD xel complex,
we sayP is weakly adjacent to Q if P£Q andPNQ+# [,
we sayP is strongly adjacent to Q if PNQis an (—1)-xel.

Weakly adjacentgrid-cells share at least a vertex.
Strongly adjacengrid-cells share am{1)D face.

A setT of grid-cells of a xel complex is said to be
weakly (strongly) connected if, for all P, Q € T, there
existTq, Tq, ..., Tme 7 such thafl,=P, T,,=Q, and

T; Is weakly (strongly) adjacent fh.; for 0<i<m.

If $#0 is a set of grid-cells of a xel complex, then
each maximal weakly (strongly) connected subset of
IS calledaweak (strong) component of .

Next, we will generalize the concept of an
8-deletable set to binary images on arbitrary
xel complexes ...

14



Binary Images; Deletable Sets of 1's

A binary image on a xel compleX is a mapping
1: G(K) —{0, 1} for which eithed[{0}] or I7[{1}]
IS a finite set. [We may omit "binary", for brevity!]

If Pe g(K) andI(P) =1, thenwe sapisal of L.
If Pe g(K) andI(P) =0, then we safisa O of I.

Observation: I™[{1}] = the set of all the 1's of.

Let < I7{1}]. Then we say is a deletable set
of 1 if D is finite and thepolyhedron I [{1}]

can be continuously deformeaer itselfonto the
polyhedron (I [{1}] \ D).

) in such a way that all points [gI"'[{1}]] \ D) remain fixed
throughout the deformation process.

In topology, such a continuous deformation process
IS called adeformation retraction. Hence:

Definition A setp < I''[{1}] is adeletableset of I
if Dis finite and there is a deformation retractioh o

U1} ontoU(T™[{1}]] \ 2).




Example of an imagd (on a 2D cubical xel complex)
and adeletable setD of 1's of I:

O=al ofl inD
= =alofinl{1]\ 2
O =a 0 off

DIS a

deletable set

of 1's ofl

A deformation
retraction of

U TI{1}] onto
U (I''{1}] \ D)




Notation: If D is a set of 1's of an imadethen

def

I -2 = the image obtained froinby
changing all thie inD to O's.

If 4 is a set of O's of an imadethen

def

I + 2 = the image obtained froinby
changing all thie in2 to 1's.

Two Properties of Deletable Sets

Changing all thel'sin a deletableset to0's
e preservesveakcomponents of thk's

e preservestrongcomponents of th@'s

More precisely, if D is anydeletableset of 1's of an
imagel, then:
o Eachweakcomponent of th&'s of I contains
just oneweakcomponenof thel's ofl — D.
e Eachstrongcomponent of th@'sof I— 2D contains
just onestrongcomponenof theO's of 1.

Note: On a 2cubical xel complex, the
weak-(strong-)components are the 8-(4-)comptaen
so the above-mentioned properties imply that

thedeletablesets are exactly tHdeletablesets.
17



Codeletable Sets of 1's

The concept of aodeletable set generalizes the

concept of a 4leletable setto arbitrary xel complexes.

Notation: If I : g(K) —{0,1} is an image, then
the imagk : G(K) —{0,1} is defined
byI°(P) = 1 —I(P) for allPe G(K).

Note: Thel's and O's of° are respectively the 0's and 1'dof

Definition A sets of 1's of an imagé is called a
codeletable set ofI if s is a deletable set ofl — )°.

Note: The 1's of the imagd ¢ 5)° are just the 0's dfand
the elements of the set equivalently, [—5)°—s=1°

If S is anycodeletableset of 1's of an image
I, then changing the elementsofto 0's

"preserves strong components of ifse
and weak components of th's":

e Eachstrongcomponent of th&'s of I contains
just onestrongcomponenof thel's ofl — .

 Eachweakcomponent of th@'sof I— §contains
just oneweakcomponenof theO's of 1.

1€



Minimal Non-Deletable Sets and
Minimal Non-Codeletable Sets of 1's

A minimal non-deletable set of an imagéis a
set? of 1's ofl such that:
1. Every proper subset ofis adeletableset ofl.
2.7 is anon-deletableset ofI.

A minimal non-codeletable set of an imagé is a
set® of 1's ofl such that:
1. Every proper subset ofis acodeletableset ofl.
2.7 Is anon-codeletablset ofl.

If K is a xel complex, then we say that a givenzset
grid-cells ofK can be minimal non-(co)deletable on K
If there exists an image: G(K) —{0,1} such thatis
a minimal non-(co)deletable setof

We say that a given sétof grid-cells ofK can be
minimal non-(co)deletableon K as a proper subset of

a component if there exists an imade: G(K) —{0,1}
such thato is a minimal non-(co)deletable setlpfand
Dis apropersubset of a weak (strong) component of
the 1's ofl.

1<



Our Main Results:

Theorem LetK be an nDxel compleXwhere 4)
and let g # D < G(K). Then
Al. D can be minimal non-deletable &n iff (D # <.

A2. D can be minimal non-deletable &nhas a
proper subset of a componefft dim(2) > 1.

B1. D can be minimal non-codeletable Kn
iff NP+ and D' (D'cD A ND' =ND).

B2.D can be minimal non-codeletable Kn

as a proper subset of a component
iff |D|<n, NP+, and3D' (D'cDAND' =D).

Note:. A2=A1 B2=Bl

Trivial Examples:

(a) If D is a singleton, them satisfies A2 and B2.
[For A2, this is becauqg@?® = D]

(b) If there existP, Q € © such thaP andQ are
not weakly adjacent, them satisfiesnoneof the

fourconditions.
[In this casg D= J.]

2(



Theorem LetK be an nDxel compleXwhere n<4)
and let & # D < Gg(K). Then

Al. D can be minimal non-deletable &niff (2 # Q.

A2. D can be minimal non-deletable &has a
proper subset of a componefft dim(2) > 1.

B1.® can be minimal non-codeletable Kn
iff N2 +#0 and 22" (D' D A D' =D).

B2.D can be minimal non-codeletable Knmas a

proper subset of a component
iff |D|<n, N #J,and AD' (D' D A D' =ND).

More Examples

(c) If n>2 and® is a pair ofstrongly adjacent
grid-cells £,Q}, thenD satisfies A2 and B2.

[For A2, this is becaugg2=P N Qis an (+1)-xel;
for B2, note that in this case
O+D <D = D ={P}or{Q} = N2 #ND]

(d) If K is a 2D cubical xel complex, amol="",
thend satisfies A1l but not A2,
and? satisfies B2.

(e) If K is a 2D cubical xel complex, amul= or
thenD satisfies Al but not A2,
and® does not satisfy the &nditions.

21



Theorem LetK be an nDxel compleXwhere n<4)
and let & # D < Gg(K). Then

Al. D can be minimal non-deletable &niff (2 # Q.

A2. D can be minimal non-deletable &has a
proper subset of a componefft dim(2) > 1.

B1.® can be minimal non-codeletable Kn
iff D +#0 and 22" (D' D A D' =D).

B2. D can be minimal non-codeletable Knas a
proper subset of a component
iff |D|<n,ND #,and 3D' (D' D A D' =D).

Further Examples —

(f) If Kis a 3D cubical xel complex, amol = |
thend satisfies A1 but not A2,
and? satisfies B2.

(9) If K is a 3D cubical xel complex, amol = ]
thenD satisfies A1 but not A2,
and?D does not satisfy the &nditions.

(h) If K is a 2D hexagonal xel complex, agd= &
thend satisfies Al and B1,
but® does not satisfy A2 or B2.

Y



TheoremLetK be an nDxel compleXwhere n<4) and let
S+ D < Gg(K). Then
Al. D can be minimal non-deletable &n iff 2 # &.
A2.D can be minimal non-deletable &has a

proper subset of a componefft dim(2) > 1.
B1. 9 can be minimal non-codeletable Kn

iff N2 #3 and 29" (D'<D A D' =D).
B2. D can be minimal non-codeletable Knas a

proper subset of a component
iff |D|<n,ND #J,and AD' (D' D A (D' =ND).

Lemma: The condition ofB1 implies|D | <n +1.

Proof: Letk=|D|-1,let D ={Py, P4, ...,Py}, and
suppose the condition of B1 holddNe must show < n.

No two members of the descending chain
PO D) Poﬂpl D) Poﬂplﬂpz 2 .2 Poﬂplﬂ ﬂPk — n@# @
can be equat— for if PN ...NP; =Py ... NPiNPi+1 then

n@: (Poﬂ ﬂPi+1) M (Pi+2ﬂ ﬂPk)
Pon ... NP) N (P2 ... NPy)
N (D\{ Pi1}), contrary to the condition of B1.

So, since each intersecti®g) ... NP;Is a xel, we have
dim(PoN ... NPi+1) <dim(Pon ... NP;) — 1 for alli <k
whencedim(D)=dim(PoN ... NPy) <dim(Py) —k =n—k.
Thereforen—k>dim("2) > 0. //



TheoremLetK be an nDxel compleXwhere n<4) and let
S+ D < Gg(K). Then

Al. D can be minimal non-deletable &n iff 2 # &.
A2.D can be minimal non-deletable &has a

proper subset of a componefft dim(2) > 1.
B1. 9 can be minimal non-codeletable Kn

iff N2 +#9 and 39" (D' D A D' =ND).
B2. D can be minimal non-codeletable Knas a

proper subset of a component

iff |D|<n,ND #J,and AD' (D' D A (D' =ND).

WhenK is a3D cubical xel complex:

D satisfies Aliff &+ D < a2x2x2 block of8 voxels
D satisfies A2iff &+ D < a2x2x1 block of4 voxels
D satisfies B2iff 9 is asingleton or

D iIs apair of 26-neighbors or
avy

D isometric t 7.
I

Note: On a_cubicalxel complexX2D, 3D, or 4D),
any setD that satisfiedB1 also satisfie82.

9 satisfies B1 but not Bif
| =n+1 (wheren = dim(K)) and, for 1<k <n,
the() of anyk+1 members ofp is an (—k)-xel.

In annD cubicalxel complex withn >2, no such sets

existbecaus®yP4, PoNP,, andP;NP> cannot all be
(n—1)-xels if theP's are distinct grid-cells.

24



Simple 1's andCosimple 1's in Binary Images

The concept of aimplel generalizes the concept of
an8-simplel to images on arbitrary xel complexes:

LetP be a 1 of an imagke

We sayP is asimple 1 of I if the singleton
set {P} is a deletable set df

Observation: Pis asimple 1 of
p—

There is a deformation retraction af

U T{1}] onto U(I{1}] \{ P}).

The concept of aocsimple 1 generalizes the concept
of a4-simplel to images on arbitrary xel complexes:

We sayP is acosimple 1 of an imagd
if Pis asimple 1 of the imadé—{P})°“.

HenceP is a cosimple 1 of an imadeiff
the singleton setR} is a codeletable set af

Remark: In an image on a 3D cubical xel complex,
the concepts addimpleandcosimplel's are equivalent
to the standard concepts28-simpleand6-simplel’s.



2D lllustrations of:

Pis asimple 1 of
p—

There is a deformation retraction gf

U T{1}] onto U(I{2}] \{ P}).

a,b,...,) are some Deformation retractions of
simple 1's of anmagel UT'{1}] onto U \{P}),
(whose 1's are the gray forPO{aDb, ...,j}.
squares)w, x, y, zare

somenon-simple 1's oflI.

2€



Simple Sets andCosmple Sets of 1's

A set? of 1's of an imagéis said to be aimple set

of I if the elements aP can be arranged in a
sequencé)q, Qo, ...,Qk In whichQ is a simple 1 of
and eacl); (i > 1) isasimple 1 ofl — {Qq, Qy, ...,Qi_1}.

Here is an equivalent recursive definition:

Definition Simplesetsof 1's in an imagd are
defined recursivelyas follows

o []isasimple set ofl.

o If D is asetofl's ofl, and there is some QD
for which
1. D\{Q} is asimple set ofl, and
2. Qisasimpldof I-@\{Q})
then D is asimple set ofl.

Cosimple sets of 1's are defined analogously—just
replace "simple" with "cosimple" in the above.

9D is a (co)simple set df = D is a (co)deletable set bf

Moreover, in any imagéon a2D xel complex,
9D is a (co)simple set df < Dis a (co)deletable set of

27



Minimal Non-Deletable = Minimal Non-Simple

A minimal non-(co)simple set of an imagéis a
set® of 1's ofl such that:

1. Eachpropersubsebf Disa(co)simplesetof I.
2. D Is a non-(co)simple set of 1's Iof

Even though a (co)deletable set need not be a
(co)simple set, we can show that:

D Isaminimalnon{co)deletablesetof I

= (%)
D i1saminimalnon{co)simplesetof I

For X = simple, cosimple, deletable, or codeletable,
we say that a sab of 1's ofl is hereditarily X if

every subset ob has the propertX:
D Is hereditarilyX < VD <D 9D has the propert

Evidently, a setDis minimal nonX if and only if
* D is not hereditarilyX, but
« every proper subset af is hereditarilyX

Hence(3) can be proved by showing:

hereditarily (co)simple= hereditarily (co)deletable
2¢&



Since 5 a simple sét= "is a deletable sét

we have that
"is hereditarily simplé = "is hereditarily deletable

To prove the reverse implication

"Is hereditarily deletable= "is hereditarily simplé
It is enough to prove

"Is hereditarily deletable= "is simplé ()

(1) is a consequence of:

Lemma: LetD be a set ol'sof an imagd and let

Q € D. Then any two of the following imply the third
1. D\{Q} is a (co)deletable set @f
2. Q is a(co)simple 1 af— (D \{Q}).
3. D is a (co)deletable set &f

To deducef), let the setb be aminimal counterexample
to () in an imagd. Then®? is hereditarily deletable ih
butDis not simple inl. LetQ be any element ab.

As D is hereditarily deletable, both and its subset

D\{ Q} are deletable id. So, by the above lemma,
Qisasimple 1 of — (2\{Q}) (x)

As D is aminimal counterexample to), andD\{ Q} is

deletable(7) impliesD\{ Q} is a simple set df; this and

(x) imply Dis simple inl, which is a contradiction.//
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The equivalence
hereditarilycodeletable= hereditarilycosimple

can be proved in a similar way, using the same lamm

Lemma: Let » be a set ol'sof an imagd and letQ € .
Then any two of the following imply the third
1. p\{Q} is a (co)deletable set @f

2.Q isa(co)simple 1 df— (D \{Q}).
3. D is a (co)deletable set bf

This fundamental lemma is a consequence of the
following fact about polyhedra:

Fact: If X, Y, andZ are polyhedra such thatc Y c X,
thenany two of the following imply the third

e Y is a deformation retract of.
e Z IS a deformation retract of
e Zis a deformation retract of.

Note: On a 3D cubical xel complex, hereditarily simple

and cosimple sets are cases of Bertrapdisple sets.
[G. Bertrand?. R. Acad. Sci. Paris, Série321, 1995, 1077-84]

If P is a set of 1's of a binary imagen a 3D cubical
xel complex, then:
P Is hereditarily simple i1 iff P isPg-simple inl.
P is hereditarily cosimple it iff 7 is®s-simple inl.
3C



The Attachment Set of a 1 in a Binary Imagd
LetQ be alof animage: G(K) — {0, 1}.

We define two sets of boundary facegof

Attach(Q, 1) £
L{ bdryfaceqQ) NbdryfaceqX) | XeI ™ {1}]\ { Q}}

Coattach(Q, 1) £
LU{ bdryfaceqQ) N bdryfacegX) | XeI[{0}] }

The setg JAttach(Q, I) and| JCoattach(Q, I) will

respectively be called thatachment set of Qin I and
the coattachment set of Qin 1.

If | I '{1}] is obtained by "gluing"Q onto
UI' {1} \ { Q}), thenthe attachment set
| JAttach(Q, I) is theset of points at which
glue may(usefully be applied

REE This diagram shos t

attachment set of each light gray 1

B P_ In the image (onx @ubical

T xel complex) whosg dre the
I light gray and daay 2-xels.
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If Iis the image (on a

3D cubical xel complex)
whose 1's are shown below,
andQ isthis 1

— ... therJAttach(Q, I)

| ‘ IS this set: ‘[

And | JAttach(Q, I) can be ¢
represented by a 2D Schlegee_l___..i....7F
diagram as follows: e

H E

If Xis any 1 of an imagg then it is straightforward
to verify that:

o Attach(X 1) =J
< no other 1 of is weakly adjacent tX

. UAttach(X,I) =X n UIH{IN\{ X}
« |JCoattach(X,I) = X N UI[{0}])
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A Local (and Essentially Discrete)
Characterization of Simple 1's and Cosimple 1's

Theorem 1 If Q is al of an imagd onan
nD xel complexwhere n< 4, then

(a) Q is a simplel iff | JAttach(Q,I) is contractible
(b) Qisacosimpleliff | JCoattach(Q, 1) is contractible

In the 4D casd,JAttach(Q,I) and| JCoattach(Q,I)

can be visualized as subsets®fj{x! in a

Schlegel diagram didryfaceqQ)!

Theorem 1 follows from results of algebraic topglog

[The "if" parts are true even without the hypotlsesi
thatn < 4, but the "only if" parts are notb

Q

3D Example:LetI be | JAttach(Q,I)

the image, on a 3D cubical 7

xel complex, whose 1's are ® : |
shown here. (All hidden

voxels are O's af.)

Then the attachment dgfAttach(Q, 1) is not contractible,
(because it is not simply connected — it "hasla"ho
So, by the above theore,is anon-simple 1 of I.
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Characterizations of Minimal Non-Simple (MNS)
and Minimal Non-Cosimple (MNCS) Sets

The following theorem states useful necessary
and sufficient conditions for a set of 1's to be
an MNS or MNCS set:

Theorem 2 In any image ona xel complex

1.Disan MNS set ofl if and only if D is finite
but nonempty andor every GD:
MNS1: Q is a non-simplé of I-(D \{Q}).
MNS2 Qis a simpléel of I-2'
whenever < D \{ Q}.

2. Disan MNCS set dfif and only if D is finite
but nonempty andor every GD:
MNCSL1: Q is a non-cosimplé of I— (D \{Q}).
MNCS2 Qis a cosimpld of I-2'
whenever < D \{ Q}.

Theorem 2 follows from an earlier lemma:
Lemma Let?D be a set ol'sof an imagd and letQ € ©. Then

any two of the following imply the third
1. D\{Q} is a (co)deletable set af

2.Q isa(co)simple 1 df — (2 \{Q}).
3. is a (co)deletable set bf
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Recall Thm. 1 If Qis a 1 of an imag&onannD xel complex
where n< 4, then
(2)Q is a simplel iff |JAttach(Q, I) is contractible
(b)Q is a cosimpld iff | JCoattach(Q, 1) is contractible

Thm. 2 In any imagd ona xel complex
1.Dis an MNS set ofl if and only if D is finite but nonempty

andor every Qe D:
MNS1: Q is a non-simpld of I—(D \{Q}).
MNS2Q is a simplel of I-D' wheneved' < D \{ Q}.
2.Disan MNCS set ofl if and only if D is finite but nonempty
andor every Qe D:
MNCS1: Q is a non-cosimplé of T— (D \{Q}).
MNCS2Q s a cosimpld. of I-2' whenever' < D\{ Q}.

Combining Theorems 1 and ®e obtain:

Theorem LetD be a set oll's of animagel onan
nD xel complexwheren<4. Then

1.Disan MNS set ofl if and only if D is finite
but nonempty andor every Qe D:
(@) JAttach(Q, I — (2 \{Q})) is not contractible
(b)) JAttach(Q, I —2') is contractible
wheneva? < D \{ Q}.

2.Disan MNCS set of if and only if D is finite
but nonempty andor every Q= D:
(a) JCoattach(Q, I—- (2 \{ Q})) is not contractible
(b)| JCoattach(Q, I —2' ) is contractible
wheneva? < D \{ Q}.
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Recall
1.Disan MNS set ofl iff D is finite but nonempty anéor every Qe D:

(@) JAttach(Q, I — (2 \{Q})) is not contractible
(b)UAttach(Q, I —2') is contractible wheneved ¢ D \ {Q}.

Letl be anmageon annD xel complexwheren < 4.
Let D bea nonempty finite setf 1's of I, and
letk=|D|-1.

For eacQ € D, defineAq, T(ig, and Xég as follows:
LetAg denote the set JAttach(Q, I — (D \{ Q})).
Let (T4 |1<i<K) be an enumeration af \{ Q}.

LetX6=QN T,  (for 1<i<K).

Then for any subsetiy, ...,I;} of {1, ..., Kk},
Ao U Xd U..U X§ = UAttach(Q, -2
where® = @\ Q) \{TQil, Tk

From the above, we deduce:
D i1s an MNS set ofl if andonlyif, forallQe D:

(1) Ag is not contractible, but

(2) Ao UX(igl J...U X(igIr is contractible
for allnonemptysubsets, ...,i;} of {1, ..., k}.
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Recall Let? be a nonempty finite set of 1's &f
Lek=|D|-1 and, for eack) € D,

let Ag denote the s¢tjAttach(Q, I - (D {Q})),
let T('? | 1<i <K) be an enumeration df \{ Q}, and

I _ i -
let XQ—QmTQ (for 1<i <K).
Then is an MNS set ofl if and only if, for allQ € D:

(1) Ag is not contractible, but

i i

1 r - -
(2) Ag UXQU U XQ IS contractible

for ahonemptysubsetsi, ...,i;} of {1, ..., K}.

Similarly, if Cq denotes the sgjCoattach(Q,I), then:
D is an MNCS set ofl if andonlyif,forallQe D:

(1) CoU X(lgu ..U X(S IS not contractible, but

(2') CQUx(iglU ..U X(igr IS contractible
for alpropersubsets¥y, ...,i,} of {1, ..., k}.

Note: CQUx(igl U ...UX(i?r = UCoattach(Q,i[—{T(igl, T(igr D
QU XQU ...UX§ = UCoattach(Q, T— (» {Q}))
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Recall: Let D be a nonempty finite set of 1's &f and lekk = |D| — 1.
For eacReD, let (T('? | I<i <K) be an enumeration ab \{ Q},

IetxiQ =QnN T(iQ (for 1<i <K), letCq = [ JCoattach(Q, I), and
let Ag = JAttach(Q, - (» {Q})). Then:

A. D is an MNS set of if and only if, for all Q € D,
(1) Ag is not contractiblebut

(2) AQUX(%U ..U Xg is contractible
for eachnonemptysubsefiy, ...,i;} of{1, ..., Kk}.

B. D is an MNCS set of if and only if, for all Q € D,
(1) CoU XclgU U )(5 is not contractiblebut

(2") Cq UX(%U U Xg is contractible
for eachproper subsefiy, ...,i;} of{1, ..., k}.

Key Fact: LetP; and P, be polyhedra irB-space Then
any two of thedwling imply the third
e« Each of R andPs,is contractible.
e P,U P, is contractible.
e P, P,is contractible.

An inductive argument based on the Key Fact yields:

Lemma 1: For any finite collections of polyhedra in
3-spacethe following are equivalent

(@) (7 is contractible wheneverd # T .
(b) JT is contractible whenevep # 7C &.

This lemma and the facks andB above are the
principal ingredients of our proof of the main riksu
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Recall: For eaclQ e D:  Ag denotes the s¢jAttach(Q, I — (D \{Q})).
T@g | 1<i<K) is an enumeration ab \{ Q}.

I — i :
XQ—QﬁTQ (for 1<i <K).

A.D is an MNS set ofl if andonlyif, forallQe D:
(1) Ag is not contractible, but

(2) AU xéglu U Xg is contractible

for allonemptysubsets§, ...,i;} of {1, ..., k}.

Lemma 1: For any finite collections of polyhedra irB-spacethe
following are equivalent
(&) )7 is contractible wheneved # TC .
(b)JT is contractible wheneved # 7C .

We now prove a series of 5 Claims which, together,
constitute the "only if" parts of the main results.

Claim 1. (9=J = D cannot be MNS

Proof: Suppos¢ D= and? is MNS in an imagé.

Pick anyQe®. Then, with the above notation,
XN ..NX§ =QNT3N..NT§ =ND =0

Lets = {AQUXE, ..., AQUXE}

ThenNS = AqQU (XgN .. NXE) = Ag.

By (2): |J7 is contractible wheneveéd # T C .

By (1): S =Ag Is not contractible.

This contradiction of Lemma 1 proves Claim 1. //
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Recall: For eaclQ e D:  Ag denotes the s¢jAttach(Q, I — (D \{Q})).
T@g | 1<i<K) is an enumeration @b \{ Q}.

I — i :
XQ—QﬂTQ (for 1<i <K).

A.D is an MNS set ofl if andonlyif, forallQe D:
(1) Ag is not contractible, but

(2) AU xéglu U Xg is contractible
for allonemptysubsets§, ...,i;} of {1, ..., k}.

Lemma 1: For any finite collections of polyhedra irB-spacethe
following are equivalent
(&) )7 is contractible wheneved # TC .

(b)JT is contractible wheneved # 7 .

Claim 2: (Dis an MNSset of I A (2D is a0-xel)
— D is a weak componenf thel'sof I.

Proof: Supposé )2 is a 0-xel{v}, and? is an MNS set
of an imagd but® isnot a weak component af'[{1}].
Pick Qe D such thalhg # . Then:

XoN .NX§ =QNTSN...nT§ = ND = {V}
Lets={AquX3, - AQUXE} SO MNS=AqU (XHN..NXE).
Then(S=Aqu{V}; and_this set isot contractiblesince:

o If v &Aq, thenAqu{V} is disconnected, a&#J.

o If veAg, thenAqU{V}=Aqis not contractible, by (1).
But, by (2), |l JT is contractible wheneved £ T C &.
This contradiction of Lemma 1 proves Claim 2. //
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Recall: | Lemma 1: For any finite collections of polyhedra irB-spacegthe
following are equivaler:

(2)()7 is contractible wheneved # T &.

(b) U7 is contractible wheneved # TC .

From this lemma we can derive the following similar
results, which deal with collectioigs all of whose

nonemptyproper subcollections have contractible
unions or contractible intersections:

Cor. 1: For any finite collections of polyhedra in
3-spacethe following are equivalent
(@) J7 is contractible wheneved # T < &.

(b)(T Is contractible wheneved +# 7 < .

Cor. 2: For any finite collections of polyhedra in
3-spacethe following are equivalent
(@) J7 is contractible wheneved # T ¢ §,

and()sS is contractible.
(b)(T is contractible wheneved # 7 < ,
and( Js is contractible.

Cor. 1 is obtained by applying Lemma 1 to each
nonempty proper subcollectianof §. Cor. 2is a

straightforward consequence of Lemma 1 and Cor. 1.
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Recall: For eaclQ e D: Cq denotes the sejCoattach(Q, I).
Té | 1<i <Kk) is an enumeration a \{ Q}.

I — i :
XQ—QﬁTQ (for 1<i <K).

B. D is an MNCS set ofl if and only if, for allQ € D:
(1) Cou xéu U )(5 IS not contractible, but

(2") Cou X(ig1 U...U X(igr is contractible
for afiropersubsetsi, ...,i;} of {1, ..., k}.

Cor. 2: For any finite collectiorys of polyhedra irB-spacethe
following are equivalent
(a)J7 is contractible wheneved # 7< s, and[).s is contractible.
(b7 is contractible wheneved # 7< §, and|JS is contractible.

Claim 3: N9=Y = D cannot be MNCS

Proof: Supposé¢ 2= and® is MNCS in an imagé.

Pick anyQe®. Then, with the above notation,
XoN..NX§ =QNT3N..nT§ = ND =

LetS={CquXds - CUXE} SO MS=CaU(XHN.-NXE)=Cao.

By (2'): |JT is contractible whenever£7 < S, and
s = Cqls contractible.

By (1'): US=Cquxg U...UXS is not contractible.

This contradiction of Cor. 2 proves Claim 3. //
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Recall: For eaclQ € D: Cqy denotes the sgjCoattach(Q, I).
ng | 1<i <K) is an enumeration ad \{ Q}.

I — i :
XQ—QﬂTQ (for 1<i <K).

B. D is an MNCS set ofl if and only if, for allQ € D:
(1) CuU xéu U )(5 IS not contractible, but

(2") Cqu X(igl U...u X(igr is contractible
for gliropersubsetsi, ...,i,} of {1, ..., k}.

Cor. 1:For any finite collections of polyhedra ir3-spacethe

following are equivalent
(a) JT is contractible wheneved # 7< .

(bJ)7 is contractible wheneved £ 7T¢ &.

Clam4: 39" (D'cD AND'=D)
= 9D cannot be MNCS

Proof (part 1): SupposeD' satisfiesD'cD A(D' =D
and® is MNCS in an imagé. Pick anyQeD'.

WLOG ?' = {Q, T§, .. T(5<}. Then, sinc)2' =2,
X5N...NnxE=QnTdN...nTE = AnTEN...nTE =XGN...nX§
Lets={CquXE, - CQuXEl S ={CqUX§, - CQUXE}
Now S'<S; by (2', 1), JS' is contractible but JsS is not.

By (2'): |JT is contractible wheneverd 7T < S.
So, by Corl, ()7 is contractible wheneverd£7T < S. (*)



Recall: B. D is an MNCS set ofl if andonlyif, forallQe D:
(1) CoU xéu U )(5 IS not contractible, but

(2) CoU X(igl U...u X(igr is contractible

for ghropersubsets i, ...,i;} of {1, ..., k}.

Claim4: 39" (D' D A NP =NP) = D cannot be MNCS
Proof (part 1): Supposed?d' (D' D A (D' =D) andD is MNCS
in an imagd. Pick anyQe »'. WLOG D' = {Q, Té, ...,TS}. Then
1 = 1 = 2 K = w2 Kk
XpN -+NXG QﬂTQm - NTQ QmTQm - NTg = X§N - NXgG:
Let5={CQUX(lQ, ,CQUX(S}, S :{CQUX(%, ,CQUX(S}

Now s' < S; by (2, 1), JS is contractible bult)s is not.
By (2'): U7 is contractible whenev&d £ T < .
So, by Cor. 17 is contractible wheneved # T < . (*)

Proof of Claim 4 (part 2): We have just shown
(7 is contractiblevhenevef+#7T < $ (*)

In particular, S Is contractible.

But s = CqU(xN-.NxE) = CaU(XZN..NXE) =N
Hence[S is contractible, and so, by (%),
()7 is contractible whenever£7 < .

Lemma 1 now tells us
|JT is contractible whenever#7 < .

In particular,| JS is contractible.
This contradiction of (1') proves Claim 4. //
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Recall: For eactQ e ©: Cqy denotes the sgjCoattach(Q, I).
Té | 1<i <Kk) is an enumeration a \{ Q}.

x}g:QmT(ig (for 1<i <K).
B. D is an MNCS set ofl if and only if, for allQ € D:
(1) CoU xéu U )(5 IS not contractible, but

(2) CoU X(igl U...u X(igr is contractible

for ghropersubsets i, ...,i;} of {1, ..., k}.

Claim 5: If Dis an MNCS set of an imadgen an
nD xel complexXn<4),and|D|=n+1, thenD is a
strong component of tHes of 1.

Proof: SupposeD is an MNCS set of 1's in some
Imagel on annD xel complex, andz}|=n+1.

Then, by Claim 3, ND#J
and, by Clam 4, 39 (DDA ND=ND).

Pick anyQeD,and defing}, andx, (1<i<k=n)as before.

As we noted eatrlier, the conditigm' (' <2 AND'=ND)
Implies that no two of the+1 members of the chain
Q2QnTE 2QnTINTS 2 .2 QNT3N...NTG = ND

are equal, so each member of this chain aftenitsie f
has strictly lower dimensionality than its predeoes

Hence N2 is a 0-xel (since dingf) =n andN2+ &).
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Proof of Claim 5 (continued). Let S={Cq, X3, ..., X5},
and lets' ={ xg, --,x§}. ThenNs'=ND+# I, so that

()7 is a xel (and is contractible) whenew&tTCS'.
Hence, by Lemma 1,

|JT is contractible whenever£7TCS'. «)
By (1', %, 2", [JSis not contractible, but

|JT is contractible whenever#7T <. (*)
So, by Cor. 2[s=CoN(2 is not contractible, whence

NSs=9 (o)

as the 0-xg2 has no nonempty non-contractible subse

Moreover, by (*) and Cor. 1,
()7 is contractible wheneve&li£T<S (&%)

As [S| =n+1, it follows from (¢), (&%), and a result of
topology known as the Nerve Theorem thas is
homotopy equivalent to gn—1)-dimensional sphere

However, | JS is the union of a subsetlodryfaceqQ),

and the only such union that is homotopy equivaient
an (+1)-dimensional sphere (gbdryfaceqQ) itself.

Hencel Js = JbdryfaceqdQ) and, since
s = JCoattach(Q, I — (\{Q})), we see that
Q is not strongly adjacent to any 1 df— (D \{ Q}).

As Q is an arbitrary element @b, it follows that
Dis a strong component of the 1'slof/
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Concluding Remarks 1

The concepts ahinimal non-smple (MNS) and
minimal non-cosimple (MNCYS) set provide the
basis for a powerful method of establishing that
a proposed parallel thinning algorithm
"preserves topology".

For binary images on the grid-cells of a comHex
the method depends on knowing the answers to the
following questions:

For algorithms that are expected to preserve
weak components of 1's and strong componer@sof

* Which sets of grid-cells can be MNS Kr?

* Which sets of grid-cells can be MNS Knas a
propesubset of a weak component of the 1's?

For algorithms that are expected to preserve
strong components of 1's and weak componersof

* Which sets of grid-cells can be MNCS kr?

* Which sets of grid-cells can be MNCS kmas a
propesubset of a strong component of the 1's?
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Concluding Remarks 2

The above gquestions have been answered in the
literature for the following 5 xel complexes:

2D, 3D, and 4D cubical xel complexes

2D hexagonal xel complex

3D face-centered cubical xel complex

Our main resultsinify andgeneralizethis
earlier work, by answering the questions for
all xel complexes of dimensiamé, as follows:

Theorem LetK be an nDxel compleXwhere n<4)
and letD be a nonempty set of grid-cellskof Then

Al. D can be MNS oK iff D + Q.

A2.D can be MNS oK as a propersubset of a
weak componentf dim(2) >1.

B1l.D can be MNCS oK
iff ND#2 and A9 (DD AND =ND).
Note: This condition implies?p| < n+1.]

B2.D can be MNCS oK as a propersubset of a
strong component

iff |o|<n, N2+ and3D' (D'cD A ND =ND).
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